Identification of key gene networks controlling organic acid and sugar metabolism during star fruit (Averrhoa carambola) development.

Xinyu Xu, Lianhuan Xu, Zirui Yang, Lei Chen, Yiqing Wang, Hui Ren, Zehuang Zhang, Yousry A El-Kassaby, Shasha Wu
Author Information
  1. Xinyu Xu: The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
  2. Lianhuan Xu: The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
  3. Zirui Yang: The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
  4. Lei Chen: The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
  5. Yiqing Wang: The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
  6. Hui Ren: Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
  7. Zehuang Zhang: Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
  8. Yousry A El-Kassaby: Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada. y.el-kassaby@ubc.ca.
  9. Shasha Wu: The Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, National Long term Scientific Research Base for Fujian Orchid Conservation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. shashawu1984@126.com.

Abstract

The sugar and organic acid content significantly impacts the flavor quality of star fruit, and it undergoes dynamic changes during development. However, the metabolic network and molecular mechanisms governing the formation of sugar and organic acid in star fruit remain unclear. In this study, 23 of 743 components were detected by metabonomic analysis. The highest metabolites contents were organic acids and derivatives. The highest sugar content in the fruit was fructose and glucose, followed by sucrose, which proved that A. carambola is a hexose accumulation type fruit. Genome identification preliminarily screened 141 genes related to glucose metabolism and 67 genes related to acid metabolism. A total of 7,881 unigenes were found in transcriptome data, 6,124 differentially expressed genes were screened, with more up-regulated than down-regulated genes. Transcriptome and metabolome association analysis screened seven core candidate genes related to glucose metabolism and 17 core genes highly related to organic acid pathway, and eight differentially expressed sugar and acid genes were selected for qRT-PCR verification. In addition, 29 bHLHs and eight bZIPs transcription factors were predicted in the glucose metabolism pathway, and 23 MYBs, nine C2H2s transcription factors and one GRAS transcription factor was predicted in the acid metabolism pathway, and transcription factors have both positive and negative regulatory effects on sugar and acid structure genes. This study increased our understanding of A. carambola fruit flavor and provided basic information for further exploring the ornamental and edible values of star fruit.

Keywords

References

  1. Front Plant Sci. 2018 Mar 16;9:339 [PMID: 29616058]
  2. J Fungi (Basel). 2022 Jul 20;8(7): [PMID: 35887505]
  3. Plant J. 2006 Jan;45(2):180-92 [PMID: 16367963]
  4. Phytochem Anal. 2008 Nov-Dec;19(6):520-5 [PMID: 18618437]
  5. Physiol Plant. 2001 May;112(1):31-38 [PMID: 11319012]
  6. BMC Plant Biol. 2022 Jun 22;22(1):303 [PMID: 35729535]
  7. Plant Cell. 2015 Aug;27(8):2244-60 [PMID: 26276836]
  8. J Sci Food Agric. 2023 Sep;103(12):6055-6069 [PMID: 37127927]
  9. Physiol Plant. 2020 Jan;168(1):133-147 [PMID: 30740711]
  10. Plant J. 2008 Dec;56(6):948-62 [PMID: 18702670]
  11. Plants (Basel). 2022 Sep 09;11(18): [PMID: 36145755]
  12. J Agric Food Chem. 2019 Jul 31;67(30):8319-8331 [PMID: 31287308]
  13. Plant Cell. 2021 Dec 3;33(12):3700-3720 [PMID: 34498076]
  14. Phytochemistry. 2003 May;63(2):131-7 [PMID: 12711133]
  15. Mol Biol Rep. 2023 Jan;50(1):361-376 [PMID: 36334232]
  16. Food Chem. 2021 Jan 1;334:127479 [PMID: 32688181]
  17. Planta. 2006 Aug;224(3):598-611 [PMID: 16552590]
  18. Front Plant Sci. 2020 Aug 28;11:564917 [PMID: 32983216]
  19. Mol Plant. 2013 Nov;6(6):1769-80 [PMID: 23702596]
  20. Planta. 2024 Jan 26;259(2):43 [PMID: 38277077]
  21. Plants (Basel). 2022 Jun 07;11(12): [PMID: 35736682]
  22. Hortic Res. 2020 Dec 1;7(1):193 [PMID: 33328462]
  23. Toxicon. 2020 Nov;187:198-202 [PMID: 32966829]
  24. Front Microbiol. 2022 Mar 03;12:802887 [PMID: 35310399]
  25. Front Pharmacol. 2021 Aug 12;12:699899 [PMID: 34475822]
  26. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  27. PeerJ. 2021 Feb 4;9:e10785 [PMID: 33604183]
  28. Hortic Res. 2020 Jun 1;7(1):95 [PMID: 32528707]
  29. Foods. 2022 Sep 07;11(18): [PMID: 36140880]
  30. BMC Genomics. 2015 Jul 11;16:520 [PMID: 26162601]
  31. Int J Mol Sci. 2023 Apr 26;24(9): [PMID: 37175598]
  32. Int J Mol Sci. 2020 Apr 09;21(7): [PMID: 32283825]
  33. Carbohydr Polym. 2018 Dec 15;202:186-202 [PMID: 30286991]
  34. Plant Sci. 2021 Mar;304:110809 [PMID: 33568307]
  35. Curr Opin Plant Biol. 2004 Jun;7(3):235-46 [PMID: 15134743]
  36. J Exp Bot. 2022 Apr 18;73(8):2275-2289 [PMID: 35139196]
  37. Plant Cell. 2004;16 Suppl:S170-80 [PMID: 15010516]
  38. J Exp Bot. 2012 Feb;63(4):1773-84 [PMID: 22371326]
  39. Int J Mol Sci. 2018 Mar 08;19(3): [PMID: 29517986]
  40. Front Plant Sci. 2016 Oct 04;7:1488 [PMID: 27757118]
  41. BMC Genomics. 2018 May 9;19(1):348 [PMID: 29743013]
  42. J Sci Food Agric. 2019 Feb;99(3):1010-1019 [PMID: 30009532]
  43. Trends Biochem Sci. 2022 Oct;47(10):839-850 [PMID: 35927139]
  44. PLoS One. 2021 Apr 29;16(4):e0238873 [PMID: 33914776]
  45. Int J Mol Sci. 2021 Sep 06;22(17): [PMID: 34502530]
  46. Front Plant Sci. 2018 Nov 20;9:1689 [PMID: 30524461]
  47. Front Plant Sci. 2023 Sep 15;14:1264283 [PMID: 37780491]
  48. aBIOTECH. 2021 Sep 20;2(3):330-340 [PMID: 36303881]
  49. Plant Mol Biol. 2012 Mar;78(4-5):377-92 [PMID: 22228409]
  50. Mol Biol Rep. 2022 Jun;49(6):5685-5695 [PMID: 35699859]
  51. BMC Plant Biol. 2021 Aug 25;21(1):396 [PMID: 34433422]
  52. BMC Plant Biol. 2010 Nov 12;10:245 [PMID: 21073695]
  53. Food Chem. 2018 Sep 1;259:278-285 [PMID: 29680055]
  54. J Exp Bot. 2016 Mar;67(5):1519-33 [PMID: 26733692]
  55. PLoS One. 2012;7(3):e33055 [PMID: 22412983]
  56. J Exp Bot. 2018 Jan 23;69(3):511-523 [PMID: 29309616]
  57. Plant Biol (Stuttg). 2010 Sep;12 Suppl 1:35-41 [PMID: 20712619]
  58. Mol Plant. 2010 Nov;3(6):942-55 [PMID: 20729475]
  59. Planta. 2008 Aug;228(3):411-25 [PMID: 18481082]
  60. Molecules. 2019 Jan 11;24(2): [PMID: 30641936]
  61. BMC Plant Biol. 2017 Apr 26;17(1):83 [PMID: 28441933]
  62. Phytochemistry. 2009 Jul-Aug;70(11-12):1329-44 [PMID: 19762054]
  63. Front Plant Sci. 2020 Sep 25;11:562399 [PMID: 33101331]
  64. Plant J. 2018 Aug;95(3):427-443 [PMID: 29750477]
  65. New Phytol. 2022 Jan;233(1):373-389 [PMID: 34255862]
  66. Annu Rev Plant Biol. 2014;65:33-67 [PMID: 24579990]
  67. BMC Plant Biol. 2020 Sep 14;20(1):422 [PMID: 32928111]
  68. Front Plant Sci. 2016 Sep 28;7:1464 [PMID: 27733861]
  69. Int J Mol Sci. 2019 Nov 28;20(23): [PMID: 31795097]
  70. Front Plant Sci. 2015 Feb 05;6:28 [PMID: 25699063]

Grants

  1. 2021 (11899170151)/the Rural Revitalization Service Team Project of Fujian Agriculture and Forestry University
  2. 2018 [(2018)0438]/The Development and Reform Commission of Fujian Province

MeSH Term

Fruit
Averrhoa
Gene Regulatory Networks
Gene Expression Regulation, Plant
Sugars
Transcriptome
Carbohydrate Metabolism
Gene Expression Profiling
Genes, Plant
Plant Proteins

Chemicals

Sugars
Plant Proteins

Word Cloud

Created with Highcharts 10.0.0acidgenesfruitmetabolismsugarorganicstarglucosecarambolarelatedtranscriptionscreenedpathwayfactorscontentflavordevelopmentstudy23analysishighestGenomedifferentiallyexpressedTranscriptomecoreeightpredictedAverrhoasignificantlyimpactsqualityundergoesdynamicchangesHowevermetabolicnetworkmolecularmechanismsgoverningformationremainunclear743componentsdetectedmetabonomicmetabolitescontentsacidsderivativesfructosefollowedsucroseprovedhexoseaccumulationtypeidentificationpreliminarily14167total7881unigenesfoundtranscriptomedata6124up-regulateddown-regulatedmetabolomeassociationsevencandidate17highlyselectedqRT-PCRverificationaddition29bHLHsbZIPsMYBsnineC2H2soneGRASfactorpositivenegativeregulatoryeffectsstructureincreasedunderstandingprovidedbasicinformationexploringornamentalediblevaluesIdentificationkeygenenetworkscontrolling‘Beiliusuan1’MetabolomeSugar

Similar Articles

Cited By