Advances in neuroscience research and big data's analysis on anxiety disorder.

Qianmei Yu, Meihua Ruan, Yongjun Chen, Chun Wang
Author Information
  1. Qianmei Yu: Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.
  2. Meihua Ruan: Shanghai Institute of Nutrition and Health, Shanghai Information Center for Life Sciences, Chinese Academy of Science, Shanghai, China.
  3. Yongjun Chen: Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.
  4. Chun Wang: Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China. ORCID

Abstract

anxiety disorder is a complex disease with the influence of environmental and genetic factors and multimolecular participation, and it is also one of the most common mental disorders. The causes of disorders are not clear but may include a variety of social, psychological, and biological factors. Therefore, neither genetics, neurobiology, nor neuroimaging can independently explain the pathological mechanism. By searching the Web of Science databases, Derwent Innovation Patent database, ClinicalTrials.gov database, and Cortellis database, we analyze the current situation of papers, patents, clinical trials, and drugs of anxiety disorder. Second, the existing literature was reviewed to summarize the neurophysiological mechanism, brain imaging, gene, anti-anxiety drugs, and other aspects of anxiety disorders. This article reviews the research status of anxiety disorders. The heterogeneity of the disease, lack of treatment effectiveness, and gaps in translational medicine still present barriers to further advancement. Thus, in-depth explorations of the underlying biological mechanisms of anxiety disorders, the detection and intervention of biological targets, and further developments based on existing intervention strategies will drive future research on anxiety disorders. This article is categorized under: Neuroscience > Clinical.

Keywords

References

  1. Andrea, R., Kai, T., Nicola, F., Alison, C., & Catherine, J. (2014). Predicting rapid response to cognitive���behavioural treatment for panic disorder: The role of hippocampus, insula, and dorsolateral prefrontal cortex. Behaviour Research and Therapy, 17, 1���9. https://doi.org/10.1016/j.brat.2014.07.017
  2. Anthony, J. T. (2018). Basic and clinical pharmacology (14th ed., pp. 381���395). McGraw���Hill Education.
  3. Baxter, A. J., Vos, T., Scott, K. M., Ferrari, A. J., & Whiteford, H. A. (2014). The global burden of anxiety disorders in 2010. Psychological Medicine, 44, 2363���2374. https://doi.org/10.1017/S0033291713003243
  4. Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., Macri, J., McCoy, K. D., Verdu, E. F., & Collins, S. M. (2011). The intestinal microbiota affect central levels of brain���derived neurotropic factor and behavior in mice. Gastroenterology, 141(2), 599���609. https://doi.org/10.1053/j.gastro.2011.04.052
  5. Bravo, J. A., Forsythe, P., & Chew, M. V. (2011). Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16050���16055. https://doi.org/10.1073/pnas.1102999108
  6. Bremner, J. D., Innis, R. B., & Southwick, S. M. (2000). Decreased benzodiazepine receptor binding in prefrontal cortex in combat���related posttraumatic stress disorder. The American Journal of Psychiatry, 157, 1120���1126. https://doi.org/10.1176/appi.ajp.157.7.1120
  7. Bremner, J. D., Innis, R. B., & White, T. (2000). SPECT [I���123] iomazenil measurement of the benzodiazepine receptor in panic disorder. Biological Psychiatry, 47, 96���106. https://doi.org/10.1016/s0006-3223(99)00188-2
  8. Buchel, C., & Dolan, R. J. (2000). Classical fear conditioning in functional neuroimaging. Current Opinion in Neurobiology, 10(2), 219���223. https://doi.org/10.1016/s0959-4388(00)00078-7
  9. Bushnell, G., Dusetzina, S., Compton, S., Gaynes, B., Brookhart, M., & Stuermer, T. (2019). Psychotherapy claims surrounding pharmacotherapy initiation in children and adolescents with anxiety disorders. Journal of Child and Adolescent Psychopharmacology, 29(2), 100���106. https://doi.org/10.1089/cap.2018.0108
  10. Bystritsky, A., Kaplan, J. T., & Feusner, J. D. (2008). A preliminary study of fMRI���guided rTMS in the treatment of generalized anxiety disorder. The Journal of Clinical Psychiatry, 69, 1092���1098. https://doi.org/10.4088/jcp.v69n0708
  11. Carmen, A., James, J. G., & Eric, L. (2011). Altered cerebral blood flow associated with pathologic worry in the elderly. Depression and Anxiety, 28, 202���209. https://doi.org/10.1002/da.20799
  12. Coplan, J. D., & Lydiard, R. B. (1998). Brain circuits in panic disorder. Biological Psychiatry, 12, 1264���1276. https://doi.org/10.1016/s0006-3223(98)00300-x
  13. Craske, M. G., Stein, M. B., Eley, T. C., Milad, M. R., Holmes, A., Rapee, R. M., & Wittchen, H. U. (2017). Anxiety disorders. Nature Reviews Disease Primers, 03, 17024. https://doi.org/10.1038/nrdp.2017.24
  14. Dunn, E. C., Sofer, T., & Gallo, L. C. (2017). Genome���wide association study of generalized anxiety symptoms in the hispanic community health study/study of latinos. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 174(2), 132���143. https://doi.org/10.1002/ajmg.b.32448
  15. Emeny, R. T., Baumert, J., & Zannas, A. S. (2018). Anxiety associated increased CpG methylation in the promoter of Asb1: A translational approach evidenced by epidemiological and clinical studies and a murine model. Neuropsychopharmacology, 43(2), 342���353. https://doi.org/10.1038/npp.2017.102
  16. Erhardt, A., Czibere, L., & Roeske, D. (2011). TMEM132D, a new candidate for anxiety phenotypes: Evidence from human and mouse studies. Molecular Psychiatry, 16(6), 647���663. https://doi.org/10.1038/mp.2010.41
  17. Evans, K. C., Simon, N. M., & Dougherty, D. D. (2008). A PET study of tiagabine treatment implicates ventral medial prefrontal cortex in generalized social anxiety disorder. Neuropsychopharmacology, 34(2), 390���398. https://doi.org/10.1038/npp.2008.69
  18. Fales, C. L., Barch, D. M., & Rundle, M. M. (2008). Altered emotional interference processing in affective and congnitive���contorl brain circuitry in majior depression. Biological Psychiatry, 63(4), 377���384. https://doi.org/10.1016/j.biopsych.2007.06.012
  19. Felger, J. C. (2018). Imaging the role of inflammation in mood and anxiety���related disorders. Current Neuropharmacology, 16(5), 533���558. https://doi.org/10.2174/1570159X15666171123201142
  20. Fontaine, R., Breton, G., Dery, R., Fontaine, S., & Elie, R. (1990). Temporal lobe abnormalities in panic disorder: An MRI study. Biological Psychiatry, 27, 304���310. https://doi.org/10.1016/0006-3223(90)90004-l
  21. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990���2016: A systematic analysis for the global burden of Disease study 2016. Lancet, 390, 1211���1259. https://doi.org/10.1016/S0140-6736(17)32154-2
  22. Glaus, J., von K��nel, R., Lasserre, A. M., Strippoli, M. F., Vandeleur, C. L., Castelao, E., Gholam���Rezaee, M., Marangoni, C., Wagner, E. N., Marques���Vidal, P., Waeber, G., Vollenweider, P., Preisig, M., & Merikangas, K. R. (2018). The bidirectional relationship between anxiety disorders and circulating levels of inflammatory markers: Results from a large longitudinal populationbased study. Depression and Anxiety, 35(4), 360���371. https://doi.org/10.1002/da.22710
  23. Goddard, A. W., Mason, G. F., & Almai, A. (2001). Reductions in occipital cortex GABA levels in panic disorder detected with 1h���magnetic resonance spectroscopy. Archives of General Psychiatry, 58(60), 556���561. https://doi.org/10.1001/archpsyc.58.6.556
  24. Gottfried, J. A., & Dolan, R. J. (2004). Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nature Neuroscience, 7, 1144���1152. https://doi.org/10.1038/nn1314
  25. Grodd, W., Schneider, F., Klose, U., & Nagele, T. (1995). Functional magnetic resonance tomography of psychological functions exemplified by experimentally induced emotions. Radiologe, 35, 283���289.
  26. Grupp, H., Koenig, H. H., & Konnopka, A. (2014). Cost measurement of mental disorders in Germany. The Journal of Mental Health Policy and Economics, 17(1), 3���8.
  27. Gunter, R. W., & Whittal, M. L. (2010). Dissemination of cognitive���behavioral treatments for anxiety disorders: Overcoming barriers and improving patient access. Clinical Psychology Review, 30, 194���202. https://doi.org/10.1016/j.cpr.2009.11.001
  28. Gwendolyn, G. C., & Kay, M. T. (2015). Resolving the neural circuits of anxiety. Nature Neuroscience, 18(10), 1394���1404. https://doi.org/10.1038/nn.4101
  29. Haas, B. W., Omura, K., Constable, R. T., & Canli, T. (2007). Emotional conflict and neuroticism: Personality���dependent activation in the amygdala and subgenual anterior cingulate. Behavioral Neuroscience, 121, 249���256. https://doi.org/10.1037/0735-7044.121.2.249
  30. Harrewijn, A., Van der Molen, M. J. W., Verkuil, B., Sweijen, S. W., Houwing���Duistermaat, J. J., & Westenberg, P. M. (2018). Heart rate variability as candidate endophenotype of social anxiety: A two���generation family study. Journal of Affective Disorders, 237, 47���55. https://doi.org/10.1016/j.jad.2018.05.001
  31. Heitmann, C. Y., Feldker, K., Neumeister, P., Zepp, B. M., Peterburs, J., Zwitserlood, P., & Straube, T. (2016). Abnormal brain activation and connectivity to standardized disorder���related visual scenes in social anxiety disorder. Human Brain Mapping, 37(4), 1559���1572. https://doi.org/10.1002/hbm.23120
  32. Helmuth, L. (2000). Neuroscience. A possible target for better benzodiazepines. Science, 290(5489), 23���25. https://doi.org/10.1126/science.290.5489.23b
  33. Huang, Y., Wang, Y., & Wang, H. (2018). Prevalence of mental disorders in China: A cross���sectional epidemiological study. Lancet Psychiatry, 6(3), 211���224. https://doi.org/10.1016/S2215-0366(18)30511-X
  34. Huo, R., Zeng, B., Zeng, L., Cheng, K., Li, B., Luo, Y., Wang, H., Zhou, C., Fang, L., Li, W., Niu, R., Wei, H., & Xie, P. (2017). Microbiota modulate anxiety���like behavior and endocrine abnormalities in hypothalamic���pituitary���adrenal axis. Frontiers in Cellular and Infection Microbiology, 7, 489. https://doi.org/10.3389/fcimb.2017.00489
  35. Iurato, S., Carrillo���Roa, T., & Arloth, J. (2017). DNA methylation signatures in panic disorder. Translational Psychiatry, 7(12), 1287. https://doi.org/10.1038/s41398-017-0026-1
  36. James, A. C., James, G., Cowdrey, F. A., Soler, A., & Choke, A. (2015). Cognitive behavioural therapy for anxiety disorders in children and adolescents. Cochrane Database of Systematic Reviews, 2, CD004690. https://doi.org/10.1002/14651858.CD004690.pub4
  37. Jennifer, M. M., Lena, P., & Jens, P. (2019). Heart rate variability in patients with agoraphobia with or without panic disorder remains stable during CBT but increases following in���vivo exposure. Journal of Anxiety Disorders, 64, 16���23. https://doi.org/10.1016/j.janxdis.2019.03.001
  38. Jetty, P. V., Charney, D. S., & Goddard, A. W. (2001). Neurobiology of generalized anxiety disorder. The Psychiatric Clinics of North America, 24(1), 75���97. https://doi.org/10.1016/s0193-953x(05)70207-0
  39. Katja, P., Susann, W., & Timo, S. (2017). Effects of mental stress induction on heart rate V ariability in patients with panic disorder. Applied Psychophysiology and Biofeedback, 42(2), 85���94. https://doi.org/10.1007/s10484-016-9346-9
  40. Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H. U. (2021). Twelve���month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21, 169���184. https://doi.org/10.1002/mpr.1359
  41. Kessler, R. C., Ruscio, A. M., Shear, K., & Wittchen, H. U. (2010). Epidemiology of anxiety disorders. Current Topics in Behavioral Neurosciences, 2, 21���35.
  42. Lepola, U., Nousiainen, U., Puranen, M., Riekkinen, P., & Rimon, R. (1990). EEG and CT findings in patients with panic disorder. Biological Psychiatry, 28, 721���727. https://doi.org/10.1016/0006-3223(90)90458-e
  43. Li, N., Wang, Q., & Wang, Y. (2019). Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxietylike and depression���like behavior in recipient mice via the gut microbiota���inflammation���brain axis. Stress, 22(5), 592���602. https://doi.org/10.1080/10253890.2019.1617267
  44. Liu, F., Guo, W., Wang, Y. F., Zeng, L., & Chen, H. F. (2013). Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Structure & Function, 220, 101���115. https://doi.org/10.1007/s00429-013-0641-4
  45. Los, K., & Waszkiewicz, N. (2021). Biological markers in anxiety disorders. Journal of Clinical Medicine, 8(10), 1744. https://doi.org/10.3390/jcm10081744
  46. Lu, Y., & Anderson, H. D. (2017). Cannabinoid signaling in health and disease. Canadian Journal of Physiology and Pharmacology, 95(4), 311���327. https://doi.org/10.1139/cjpp-2016-0346
  47. Luna, R. A., & Foster, J. A. (2015). Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Current Opinion in Biotechnology, 32, 35���41. https://doi.org/10.1016/j.copbio.2014.10.007
  48. Lydiard, R. B. (2003). The role of GABA in anxiety disorders. The Journal of Clinical Psychiatry, 64(3), 21���27.
  49. Malizia, A. L., Cunningham, J., & Bell, C. J. (1998). Decreased brain GABAA benzodiazepine receptor binding in panic disorder: Preliminary results from a quantitative PET study. Archives of General Psychiatry, 55, 715���720. https://doi.org/10.1001/archpsyc.55.8.715
  50. Marsland, A. L., Walsh, C., & Lockwood, K. (2017). The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta���analysis. Brain, Behavior, and Immunity, 64, 208���219. https://doi.org/10.1016/j.bbi.2017.01.011
  51. Mathew, S. J., Price, R. B., & Mao, X. (2008). Hippocampal N���acetylaspartate concentration and response to riluzole in generalized anxiety disorder. Biological Psychiatry, 63, 891���898. https://doi.org/10.1016/j.biopsych.2007.09.012
  52. Mayer, E. A., Knight, R., & Mazmanian, S. K. (2014). Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience, 34(46), 15490���15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014
  53. Melissa, P., David, P., & Scott, T. (2017). Clinical and non���clinical depression and anxiety in young people: A scoping review on heart rate variability. Autonomic Neuroscience, 208, 1���14. https://doi.org/10.1016/j.autneu.2017.08.008
  54. Michelle, G. C., & Murray, B. S. (2016). Anxiety. Seminar, 388, 3048���3059. https://doi.org/10.1016/S0140-6736(16)30381-6
  55. Milena, A. Q., & Arlene, J. A. (2021a). Assessing the feasibility of heart rate variability as an objective indicator of anxiety in older adults with dementia living in care homes. BMC Research Notes, 14(1), 48. https://doi.org/10.1186/s13104-021-05458-2
  56. Mishra, T. K., Shankar, R., Sharma, I., & Srivastava, P. K. (1998). Serum lipids in anxiety neurosis. Indian Journal of Psychiatry, 26, 237���241.
  57. Naud��, P. J. W., Roest, A. M., Stein, D. J., De Jonge, P., & Doornbos, B. (2018). Anxiety disorders and CRP in a population cohort study with 54,326 participants: The life lines study. The World Journal of Biological Psychiatry, 19(6), 461���470. https://doi.org/10.1080/15622975.2018.1433325
  58. Nutt, D. J. (2001). Neurobiological mechanisms in generalized anxiety disorder. The Journal of Clinical Psychiatry, 62(suppl 11), 22���27.
  59. Okbay, A., Baselmans, B. M., & Deneve, J. E. (2016). Corrigendum: Genetic variants associated with subjective well���being, depressive symptoms, and neuroticism identified through genome���wide analyses. Nature Genetics, 48(12), 1591. https://doi.org/10.1038/ng1216-1587b
  60. Ontiveros, A., Fontaine, R., Breton, G., Elie, R., Fontaine, S., & Dery, R. (1989). Correlation of severity of panic disorder and neuroanatomical changes on magnetic resonance imaging. The Journal of Neuropsychiatry and Clinical Neurosciences, 1, 404���408. https://doi.org/10.1176/jnp.1.4.404
  61. Otowa, T., Hek, K., & Lee, M. (2016). Meta���analysis of genome���wide association studies of anxiety disorders. Molecular Psychiatry, 21, 1391���1399. https://doi.org/10.1038/mp.2015.197
  62. Otowa, T., Maher, B. S., & Aggen, S. H. (2014). Genome���wide and gene���based association studies of anxiety disorders in European and African American samples. PLoS One, 9(11), e112559. https://doi.org/10.1371/journal.pone.0112559
  63. Patel, S., Hill, M. N., & Cheer, J. F. (2017). The endocannabinoid system as a target for novel anxiolytic drugs. Neuroscience and Biobehavioral Reviews, 76, 56���66. https://doi.org/10.1016/j.neubiorev.2016.12.033
  64. Paulus, M. P., Feinstein, J. S., Simmons, A., & Stein, M. B. (2004). Anterior cingulate activation in high trait anxious subjects is related to altered error processing during decision making. Biological Psychiatry, 55, 1179���1187. https://doi.org/10.1016/j.biopsych.2004.02.023
  65. Perna, G., Iannone, G., & Alciati, A. (2016). Are anxiety disorders associated with accelerated aging? A focus on neuroprogression. Neural Plasticity, 20(16), 8457612. https://doi.org/10.1155/2016/8457612
  66. Purves, K. L., Coleman, J. R. I., & Meier, S. M. (2019). A major role for common genetic variation in anxiety disorders. Molecular Psychiatry, 25, 3292���3303. https://doi.org/10.1038/s41380-019-0559-1
  67. Qiao, J. P., Li, A. N., Cao, C. F., Wang, Z. S., Sun, J. D., & Xu, G. R. (2017). Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Frontiers in Human Neuroscience, 11, 626. https://doi.org/10.3389/fnhum.2017.00626
  68. Rappaport, L. M., Di Nardo, N., Brotman, M. A., Pine, D. S., Leibenluft, E., Roberson���Nay, R., & Hettema, J. M. (2021). Pediatric anxiety associated with altered facial emotion recognition. Journal of Anxiety Disorders, 82, 102432. https://doi.org/10.1016/j.janxdis.2021.102432
  69. Reeves, J. W., Fisher, A. J., Newman, M. G., & Granger, D. A. (2016). Sympathetic and hypothalamic���pituitary���adrenal asymmetry in generalized anxiety disorder. Psychophysiology, 53(6), 956���967. https://doi.org/10.1111/psyp.12634
  70. Reynold, D. S., McKeman, R. M., & Dawson, G. R. (2001). Anxiolytic���like action of diazepam: Which GABAAreceptor subtype is involved? Trends in Pharmacological Sciences, 22(8), 402���403. https://doi.org/10.1016/s0165-6147(00)01773-9
  71. Rudolph, U., Crestani, F., & Benke, D. (1999). Benzodiazepine actions mediated by specific �����aminobutyric acidAreceptor subtypes. Nature, 401, 796���800. https://doi.org/10.1038/44579
  72. Schaffer, A., McIntosh, D., Goldstein, B., Rector, N., McIntyre, R., Beaulieu, S., Swinson, R., Yatham, L. N., & Canadian Network for Mood and Anxiety Treatments (CANMAT) Task Force. (2012). The Canadian network for mood and anxiety treatments (CANMAT) task force recommendations for the management of patients with mood disorders and comorbid anxiety disorders. Annals of Clinical Psychiatry, 24(1), 6���22.
  73. Shimada���Sugimoto, M., Otowa, T., & Miyagawa, T. (2017). Epigenome���wide association study of DNA methylation in panic disorder. Clinical Epigenetics, 9(1), 6. https://doi.org/10.1186/s13148-016-0307-1
  74. Smith, T. A. D. (2001). Type A�����aminobutyric acid (GABAA) receptor subunits and benzodiazepine binding: Significance to clinical syndromes and their treatment. British Journal of Biomedical Science, 58, 111���121.
  75. Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. (2013). Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology, 38(8), 1220���1235. https://doi.org/10.1016/j.psyneuen.2012.11.015
  76. Stein, M. B., Chen, C. Y., & Jain, S. (2017). Genetic risk variants for social anxiety. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 174(2), 120���131. https://doi.org/10.1002/ajmg.b.32520
  77. Stockhorst, U., & Antov, M. I. (2016). Modulation of fear extinction by stress, stress hormones and estradiol: A review. Frontiers in Behavioral Neuroscience, 26(9), 359. https://doi.org/10.3389/fnbeh.2015.00359
  78. Strawn, J. R., Mills, J. A., & Schroeder, H. (2020). Escitalopram in adolescents with generalized anxiety disorder: A double���blind, randomized, placebo���controlled study. The Journal of Clinical Psychiatry, 81(5), 13396. https://doi.org/10.4088/JCP.20m13396
  79. Suarez, E. C. (1999). Relations of trait depression and anxiety to low lipid and lipoprotein concentrations in healthy young adult women. Psychosomatic Medicine, 61, 273���279. https://doi.org/10.1097/00006842-199905000-00004
  80. Sudo, N., Chida, Y., & Aiba, Y. (2004). Postnatal microbial colonization programs the hypothalamic���pituitary���adrenal system for stress response in mice. The Journal of Physiology, 558(1), 263���275. https://doi.org/10.1113/jphysiol.2004.063388
  81. Surcinelli, P., Maurizio, C., & Ornella, M. (2006). Facial emotion recognition in trait anxiety. Journal of Anxiety Disorders, 20(1), 110���117. https://doi.org/10.1016/j.janxdis.2004.11.010
  82. Tamura, A., Maruyama, Y., & Ishitobi, Y. (2013). Salivary alpha���amylase and cortisol responsiveness following electrical stimulation stress in patients with the generalized type of social anxiety disorder. Pharmacopsychiatry, 47(7), 225���260. https://doi.org/10.1055/s-0033-1353157
  83. Tanay, V., Greenshaw, A. J., Baker, G. B., & Bateson, A. N. (2001). Common effects of chronically administered antipanic drugs on brainstem GABAA receptor subunit gene expression. Molecular Psychiatry, 6, 404���412. https://doi.org/10.1038/sj.mp.4000879
  84. Tang, S. Q., & Lu, Y. (2013). Endocannabinoids���Biosynthesis, signal transduction and biodegration. Chinese Pharmacological Bulletin, 29(8), 1037���1041.
  85. Thomas, D., Catherine, H. A., Carsten, S., Bernd, L., J��rgen, D., B��chel, C., & Andreas, J. F. (2021). Neural correlates of the emotional Stroop task in panic disorder patients: An event���related fMRI study. Journal of Psychiatric Research, 46(12), 1627���1634. https://doi.org/10.1016/j.jpsychires.2012.09.004
  86. Tiihonen, J., Kuikka, J., & Rasanen, P. (1997). Cerebral benzodiazepine receptor binding and distribution in generalized anxiety disorder: A fractal analysis. Molecular Psychiatry, 2, 463���471. https://doi.org/10.1038/sj.mp.4000329
  87. Uchida, R. R., Del���Ben, C. M., & Busatto, G. F. (2008). Regional gray matter abnormalities in panic disorder: A voxel���based morphometry study. Psychiatry Research, 163, 21���29. https://doi.org/10.1016/j.pscychresns.2007.04.015
  88. Uhde, T. W., Berrettini, W. H., Byrne, P. P., Boulenger, J. P., & Post, R. M. (1987). Platelet 3Himipramine binding in patients with panic disorder. Biological Psychiatry, 22, 52���58.
  89. Vermetten, E., & Bremner, J. D. (2002). Circuits and systems in stress, 1: Preclinical studies. Depression and Anxiety, 15, 126���147. https://doi.org/10.1002/da.10016
  90. Vismara, M., Girone, N., Cirnigliaro, G., Fasciana, F., Vanzetto, N., Ferrara, L., Priori, A., D'Addario, C., Vigan��, C., & Dell'Osso, B. (2020). Peripheral biomarkers in DSM���5 anxiety disorders: An updated overview. Brain Sciences, 8(10), 564. https://doi.org/10.3390/brainsci10080564
  91. Vythilingam, M., Anderson, E. R., Goddard, A., Woods, S. W., Staib, L. H., Charney, D. S., & Bremner, J. D. (2000). Temporal lobe volume in panic disorder. A quantitative magnetic resonance imaging study. Psychiatry Research, 99, 75���82. https://doi.org/10.1016/s0925-4927(00)00055-x
  92. Wagner, E. N., Strippoli, M. F., & Ajdacic���Gross, V. (2020). Generalized anxiety disorder is prospectively associated with decreased levels of interleukin���6 and adiponectin among individuals from the community. Journal of Affective Disorders, 270, 114���117. https://doi.org/10.1016/j.jad.2020.03.123
  93. Wang, C., Zhang, J., & Zhang, N. (2013). Comparison of the neurobiological effects of attribution retraining group therapy with those of selective serotonin reuptake inhibitors. Brazilian Journal of Medical and Biological Research, 46(3), 318���326. https://doi.org/10.1590/1414-431x20122658
  94. Wurthmann, C., Bogerts, B., Gregor, J., Baumann, B., Effenberger, O., & Dohring, W. (1997). Frontal CSF enlargement in panic disorder: Aqualitative CT���scan study. Psychiatry Research, 76, 83���87. https://doi.org/10.1016/s0925-4927(97)00065-6
  95. Zhang, Y., Zhou, B., Qiu, J., Zhang, L., & Zou, Z. (2020). Heart rate variability changes in patients with panic disorder. Journal of Affective Disorders, 267, 297���306. https://doi.org/10.1016/j.jad.2020.01.132
  96. Zheng, T., Zhang, Q., Jia, J. Y., & Liang, J. H. (2021). Research progress of new anti���anxiety drugs. Chinese Pharmacological Bulletin, 37(9), 1188���1196.
  97. Zhu, Y., Wang, C., Dong, L., & Xiao, M. (2020). Home quarantine or centralized quarantine, which is more conductive to fighting COVID���19 pandemic? Brain, Behavior, and Immunity, 2, 142���143. https://doi.org/10.1016/j.bbi.2020.05.009
  98. Ziegler, C., Grundner���Culemann, F., & Schiele, M. A. (2019). The DNA methylome in panic disorder: A case���control and longitudinal psychotherapy���epigenetic study. Translational Psychiatry, 9(1), 314. https://doi.org/10.1038/s41398-019-0648-6
  99. Zorn, J. V., Schur, R. R., Boks, M. P., Kahn, R. S., Jo��ls, M., & Vinkers, C. H. (2017). Cortisol stress reactivity across psychiatric disorders: A systematic review and meta���analysis. Psychoneuroendocrinology, 77, 25���36. https://doi.org/10.1016/j.psyneuen.2016.11.036

Grants

  1. 81871344/National Natural Science Foundation of China
  2. 81971289/National Natural Science Foundation of China
  3. BE2019609/The Jiangsu Provincial Key Research and Development Program
  4. BK20191369/The Natural Science Foundation of Jiangsu Province

MeSH Term

Humans
Anti-Anxiety Agents
Anxiety Disorders
Big Data
Brain
Neuroimaging
Neurosciences

Chemicals

Anti-Anxiety Agents

Word Cloud

Created with Highcharts 10.0.0disordersanxietydisorderbiologicaldatabaseresearchdiseasefactorsmechanismdrugsexistingarticletreatmentinterventionneuroscienceAnxietycomplexinfluenceenvironmentalgeneticmultimolecularparticipationalsoonecommonmentalcausesclearmayincludevarietysocialpsychologicalThereforeneithergeneticsneurobiologyneuroimagingcanindependentlyexplainpathologicalsearchingWebSciencedatabasesDerwentInnovationPatentClinicalTrialsgovCortellisanalyzecurrentsituationpaperspatentsclinicaltrialsSecondliteraturereviewedsummarizeneurophysiologicalbrainimaginggeneanti-anxietyaspectsreviewsstatusheterogeneitylackeffectivenessgapstranslationalmedicinestillpresentbarriersadvancementThusin-depthexplorationsunderlyingmechanismsdetectiontargetsdevelopmentsbasedstrategieswilldrivefuturecategorizedunder:Neuroscience>ClinicalAdvancesbigdata'sanalysispathogenesisprogress

Similar Articles

Cited By

No available data.