Feedbacks Between Estuarine Metabolism and Anthropogenic CO Accelerate Local Rates of Ocean Acidification and Hasten Threshold Exceedances.

Stephen R Pacella, Cheryl A Brown, Rochelle G Labiosa, Burke Hales, T Chris Mochon Collura, Wiley Evans, George G Waldbusser
Author Information
  1. Stephen R Pacella: Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, USA. ORCID
  2. Cheryl A Brown: Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, USA. ORCID
  3. Rochelle G Labiosa: Region 10, United States Environmental Protection Agency, Seattle, WA, USA.
  4. Burke Hales: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA. ORCID
  5. T Chris Mochon Collura: Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, USA.
  6. Wiley Evans: Hakai Institute, Heroit Bay, BC, Canada. ORCID
  7. George G Waldbusser: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA.

Abstract

Attribution of the ocean acidification (OA) signal in estuarine carbonate system observations is necessary for quantifying the impacts of global anthropogenic emissions on water quality, and informing managers of the efficacy of potential mitigation options. We present an analysis of observational data to characterize dynamics and drivers of seasonal carbonate system variability in two seagrass habitats of Puget Sound, WA, USA, and estimate how carbon accumulations due to anthropogenic emissions interact with these drivers of carbonate chemistry to determine seasonally resolved rates of acidification in these habitats. Three independent simulations of accumulation from 1765 to 2100 were run using two previously published methods and one novel method for estimation. Our results revealed persistent seasonal differences in the magnitude of carbonate system responses to anthropogenic emissions caused by seasonal metabolic changes to the buffering capacity of estuarine waters. The seasonal variability of and is increased (while that of is decreased) and acidification rates are accelerated when compared with open-ocean estimates, highlighting how feedbacks between local metabolism and can control the susceptibility of estuarine habitats to OA impacts. The changes in seasonal variability can shorten the timeline to exceedance of established physiological thresholds for endemic organisms and existing Washington State water quality criteria for pH. We highlight how estimation uncertainties manifest in shallow coastal waters and limit our ability to predict impacts to coastal organisms and ecosystems from anthropogenic emissions.

References

  1. Glob Chang Biol. 2018 Sep;24(9):4438-4452 [PMID: 29799660]
  2. Glob Chang Biol. 2013 Jun;19(6):1884-96 [PMID: 23505245]
  3. Nature. 2016 Jan 21;529(7586):383-6 [PMID: 26791726]
  4. Science. 2011 May 27;332(6033):1036-7 [PMID: 21617060]
  5. PLoS One. 2020 Sep 3;15(9):e0238432 [PMID: 32881918]
  6. Glob Chang Biol. 2013 May;19(5):1632-41 [PMID: 23505026]
  7. PLoS One. 2016 Aug 11;11(8):e0160669 [PMID: 27513576]
  8. Ann Rev Mar Sci. 2021 Jan;13:23-55 [PMID: 32956015]
  9. Sci Rep. 2019 Dec 9;9(1):18624 [PMID: 31819102]
  10. Sci Rep. 2017 May 31;7(1):2526 [PMID: 28566727]
  11. Ann Rev Mar Sci. 2009;1:169-92 [PMID: 21141034]
  12. Nat Commun. 2017 Aug 28;8(1):369 [PMID: 28848240]
  13. Nat Commun. 2018 Jan 31;9(1):454 [PMID: 29386510]
  14. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3870-3875 [PMID: 29610330]
  15. Ann Rev Mar Sci. 2014;6:221-47 [PMID: 23987912]
  16. Adv Mar Biol. 2013;65:95-148 [PMID: 23763893]
  17. Science. 2019 Mar 15;363(6432):1193-1199 [PMID: 30872519]
  18. Geophys Res Lett. 2015 Mar 16;42(5):1459-1464 [PMID: 26074650]
  19. PLoS One. 2015 Jun 10;10(6):e0128376 [PMID: 26061095]
  20. PLoS One. 2011;6(12):e28983 [PMID: 22205986]
  21. Glob Chang Biol. 2017 Apr;23(4):1525-1539 [PMID: 28078785]
  22. Ecology. 2012 Dec;93(12):2758-68 [PMID: 23431605]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0seasonalcarbonateanthropogenicemissionsacidificationestuarinesystemimpactsvariabilityhabitatsOAwaterqualitydriverstworatesestimationchangeswaterscanorganismscoastalAttributionoceansignalobservationsnecessaryquantifyingglobalinformingmanagersefficacypotentialmitigationoptionspresentanalysisobservationaldatacharacterizedynamicsseagrassPugetSoundWAUSAestimatecarbonaccumulationsdueinteractchemistrydetermineseasonallyresolvedThreeindependentsimulationsaccumulation17652100runusingpreviouslypublishedmethodsonenovelmethodresultsrevealedpersistentdifferencesmagnituderesponsescausedmetabolicbufferingcapacityincreaseddecreasedacceleratedcomparedopen-oceanestimateshighlightingfeedbackslocalmetabolismcontrolsusceptibilityshortentimelineexceedanceestablishedphysiologicalthresholdsendemicexistingWashingtonStatecriteriapHhighlightuncertaintiesmanifestshallowlimitabilitypredictecosystemsFeedbacksEstuarineMetabolismAnthropogenicCOAccelerateLocalRatesOceanAcidificationHastenThresholdExceedances

Similar Articles

Cited By

No available data.