A model for rapid PM exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3.

Sean Raffuse, Susan O'Neill, Rebecca Schmidt
Author Information
  1. Sean Raffuse: Air Quality Research Center, University of California, Davis, Davis, CA, United States.
  2. Susan O'Neill: Pacific Northwest Research Station, USDA Forest Service, Seattle, WA, United States.
  3. Rebecca Schmidt: Department of Public Health Sciences, MIND Institute, University of California Davis School of Medicine, Davis, CA, United States.

Abstract

Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has increased. The rapidfire (relatively accurate particulate information derived from inputs retrieved easily) R package (version 0.1.3) provides a suite of tools for developing exposure assignments using data sets that are routinely generated and publicly available within a month of the event. Specifically, rapidfire harvests official air quality monitoring, satellite observations, meteorological modeling, operational predictive smoke modeling, and low-cost sensor networks. A machine learning approach, random forest (RF) regression, is used to fuse the different data sets. Using rapidfire, we produced estimates of ground-level 24 h average particulate matter for several large wildfire smoke events in California from 2017-2021. These estimates show excellent agreement with independent measures from filter-based networks.

References

  1. Environ Health Perspect. 2016 Sep;124(9):1334-43 [PMID: 27082891]
  2. Environ Sci Technol. 2014 Feb 18;48(4):2298-304 [PMID: 24443984]
  3. Environ Sci Technol. 2017 Jun 20;51(12):6674-6682 [PMID: 28493694]
  4. Environ Sci Technol. 2020 Feb 18;54(4):2152-2162 [PMID: 31927908]
  5. ISPRS Int J Geoinf. 2014 Jun;3(2):713-731 [PMID: 36405525]
  6. Environ Health Perspect. 2012 May;120(5):695-701 [PMID: 22456494]
  7. Environ Res. 2016 May;147:383-98 [PMID: 26945620]
  8. J Geophys Res Atmos. 2017 Mar 16;122(5):3005-3022 [PMID: 29796366]
  9. Part Fibre Toxicol. 2021 Jan 7;18(1):2 [PMID: 33413506]
  10. J Air Waste Manag Assoc. 2021 Jul;71(7):791-814 [PMID: 33630725]
  11. Environ Res. 2022 Jan;203:111872 [PMID: 34403668]
  12. J Geophys Res Atmos. 2020 Jul 22;125(14): [PMID: 33425635]
  13. Environ Health Perspect. 2011 Nov;119(11):1616-21 [PMID: 21768054]
  14. J Air Waste Manag Assoc. 2021 Jul;71(7):815-829 [PMID: 33914671]
  15. Nat Commun. 2021 Mar 5;12(1):1493 [PMID: 33674571]
  16. Lancet Planet Health. 2021 Sep;5(9):e579-e587 [PMID: 34508679]
  17. Environ Int. 2016 Feb;87:56-65 [PMID: 26641520]
  18. Toxicol Appl Pharmacol. 2011 Dec 1;257(2):182-8 [PMID: 21945489]
  19. Int J Environ Res Public Health. 2019 Jun 17;16(12): [PMID: 31212933]
  20. Environ Res. 2020 Apr;183:109075 [PMID: 31999995]
  21. Environ Sci Technol. 2015 Mar 17;49(6):3887-96 [PMID: 25648639]
  22. Atmos Meas Tech. 2021 Jun 22;4(6): [PMID: 34504625]
  23. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33431571]
  24. Environ Health Perspect. 2009 Jun;117(6):893-7 [PMID: 19590679]
  25. Environ Toxicol Pharmacol. 2017 Oct;55:186-195 [PMID: 28892756]
  26. J Air Waste Manag Assoc. 2014 Dec;64(12):1410-38 [PMID: 25562937]
  27. Environ Res. 2016 Nov;151:351-358 [PMID: 27525668]
  28. Environ Health Perspect. 2011 Jun;119(6):873-7 [PMID: 21156395]
  29. Environ Res. 2019 Sep;176:108505 [PMID: 31229778]
  30. Int J Environ Res Public Health. 2019 Oct 02;16(19): [PMID: 31581673]
  31. JAMA Psychiatry. 2013 Jan;70(1):71-7 [PMID: 23404082]
  32. Environ Pollut. 2021 Jun 1;278:116856 [PMID: 33714060]
  33. Environ Health Perspect. 2018 Jan 24;126(1):017011 [PMID: 29373863]
  34. Environ Health Perspect. 2012 Sep;120(9):1340-5 [PMID: 22645279]
  35. Geocarto Int. 2014 Jan 1;29(1):85-98 [PMID: 24910505]
  36. Pediatrics. 2021 Apr;147(4): [PMID: 33757996]
  37. Inhal Toxicol. 2010 Jun;22(7):561-70 [PMID: 20388000]
  38. Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7901-7906 [PMID: 30012611]
  39. Environ Sci Technol. 2020 Nov 3;54(21):13439-13447 [PMID: 33064454]
  40. Environ Sci Technol. 2022 Oct 4;56(19):13607-13621 [PMID: 36134580]
  41. Environ Health Perspect. 2018 Nov;126(11):117004 [PMID: 30465702]

Grants

  1. R21 ES029852/NIEHS NIH HHS
  2. R21 ES031026/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0smokeexposureeventsestimatesrapidfireaerosoldatasetslargeCaliforniarapidparticulate13usingroutinelyavailablemodelingnetworkswildfireUrbanwildfiresbecomeincreasinglycommonthroughoutwesternUnitedStatesabilitystudyimpactshighexposurespubliclimitedavailabilityhigh-qualityspatiallyresolvedconcentrationsMethodsassigningoftenemploymultipletime-consumingcreatedifficultreproducegoneoccasionalnearlyannualfrequencyneedassessmentsincreasedrelativelyaccurateinformationderivedinputsretrievedeasilyRpackageversion0providessuitetoolsdevelopingassignmentsgeneratedpubliclywithinmontheventSpecificallyharvestsofficialairqualitymonitoringsatelliteobservationsmeteorologicaloperationalpredictivelow-costsensormachinelearningapproachrandomforestRFregressionusedfusedifferentUsingproducedground-level24haveragematterseveral2017-2021showexcellentagreementindependentmeasuresfilter-basedmodelPMconditionsdata:v0

Similar Articles

Cited By

No available data.