Cryosectioning and immunofluorescence of C. elegans reveals endogenous polyphosphate in intestinal endo-lysosomal organelles.

Ellen Quarles, Lauren Petreanu, Anjali Narain, Aanchal Jain, Akash Rai, Joyful Wang, Bryndon Oleson, Ursula Jakob
Author Information
  1. Ellen Quarles: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA. Electronic address: equarles@gmail.com.
  2. Lauren Petreanu: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
  3. Anjali Narain: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
  4. Aanchal Jain: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
  5. Akash Rai: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
  6. Joyful Wang: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
  7. Bryndon Oleson: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.
  8. Ursula Jakob: University of Michigan, Molecular, Cellular, and Developmental Biology Department, Ann Arbor, MI, USA.

Abstract

Polyphosphate (polyP) is a ubiquitous polyanion present throughout the tree of life. While polyP's widely varied functions have been interrogated in single-celled organisms, little is known about the cellular distribution and function of polyP in multicellular organisms. To study polyP in metazoans, we developed the nematode Caenorhabditis elegans as a model system. We designed a high-throughput, longitudinal-orientation cryosectioning method that allowed us to scrutinize the intracellular localization of polyP in fixed C. elegans using fluorescent polyP probes and co-immunostaining targeting appropriate marker proteins. We discovered that the vast majority of polyP is localized within the endo-lysosomal compartments of the intestinal cells and is highly sensitive toward the disruption of endo-lysosomal compartment generation and food availability. This study lays the groundwork for further mechanistic research of polyPs in multicellular organisms and provides a reliable method for immunostaining hundreds of fixed worms in a single experiment.

Keywords

References

  1. J Vis Exp. 2013 Oct 14;(80): [PMID: 24145964]
  2. Mol Biol Cell. 2011 Jul 15;22(14):2579-87 [PMID: 21613542]
  3. Cold Spring Harb Perspect Biol. 2019 May 1;11(5): [PMID: 30617049]
  4. Development. 1994 Oct;120(10):2901-11 [PMID: 7607080]
  5. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  6. Front Oncol. 2019 Dec 12;9:1410 [PMID: 31921667]
  7. Cell Rep Methods. 2024 Jul 15;4(7):100814 [PMID: 38981472]
  8. Mikrobiologiia. 2011 Sep-Oct;80(5):612-8 [PMID: 22168004]
  9. Curr Protoc. 2022 Jan;2(1):e342 [PMID: 35038380]
  10. WormBook. 2006 Jun 19;:1-61 [PMID: 18050446]
  11. Parasitol Today. 1999 Nov;15(11):443-8 [PMID: 10511686]
  12. J Biol Chem. 1993 Jan 5;268(1):633-9 [PMID: 8380170]
  13. Mol Cell. 2014 Mar 6;53(5):689-99 [PMID: 24560923]
  14. Appl Environ Microbiol. 2005 Oct;71(10):5692-701 [PMID: 16204477]
  15. Curr Genet. 2021 Jun;67(3):331-346 [PMID: 33420907]
  16. Nat Commun. 2013;4:1362 [PMID: 23322050]
  17. Blood Adv. 2021 Nov 23;5(22):4741-4751 [PMID: 34597365]
  18. Pharmacol Res. 2021 Jan;163:105211 [PMID: 33010423]
  19. Neuron. 2022 May 18;110(10):1656-1670.e12 [PMID: 35276083]
  20. Biochem Soc Trans. 2016 Feb;44(1):1-6 [PMID: 26862180]
  21. Science. 1997 Sep 5;277(5331):1453-62 [PMID: 9278503]
  22. Trends Microbiol. 2021 Nov;29(11):1013-1023 [PMID: 33632603]
  23. Mol Biol Cell. 2005 Jul;16(7):3273-88 [PMID: 15843430]
  24. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  25. Res Pract Thromb Haemost. 2018 Nov 15;3(1):18-25 [PMID: 30656272]
  26. Dev Cell. 2018 Dec 17;47(6):801-813.e6 [PMID: 30416013]
  27. Biochemistry (Mosc). 2018 Aug;83(8):961-968 [PMID: 30208832]
  28. Cell Rep. 2021 Nov 16;37(7):110004 [PMID: 34788624]
  29. J Bacteriol. 2019 Apr 9;201(9): [PMID: 30745375]
  30. Mol Biol Evol. 2021 Jan 4;38(1):229-243 [PMID: 32785688]
  31. Annu Rev Biochem. 1999;68:89-125 [PMID: 10872445]
  32. J Biol Chem. 2011 Sep 16;286(37):31966-74 [PMID: 21775424]
  33. J Cell Sci. 2000 Jul;113 ( Pt 14):2595-606 [PMID: 10862717]
  34. PLoS Genet. 2018 Nov 12;14(11):e1007772 [PMID: 30419011]
  35. Mol Biol Cell. 2014 Apr;25(7):1073-96 [PMID: 24501423]
  36. J Biol Chem. 2019 Feb 8;294(6):2180-2190 [PMID: 30425096]

Grants

  1. R35 GM122506/NIGMS NIH HHS

MeSH Term

Animals
Caenorhabditis elegans
Polyphosphates
Lysosomes
Fluorescent Antibody Technique
Cryoultramicrotomy
Endosomes
Intestines
Caenorhabditis elegans Proteins

Chemicals

Polyphosphates
Caenorhabditis elegans Proteins

Word Cloud

Created with Highcharts 10.0.0polyPorganismsendo-lysosomalmulticellularstudyCaenorhabditiselegansmethodfixedC elegansintestinalimmunofluorescencepolyphosphateCP:PolyphosphateubiquitouspolyanionpresentthroughouttreelifepolyP'swidelyvariedfunctionsinterrogatedsingle-celledlittleknowncellulardistributionfunctionmetazoansdevelopednematodemodelsystemdesignedhigh-throughputlongitudinal-orientationcryosectioningallowedusscrutinizeintracellularlocalizationusingfluorescentprobesco-immunostainingtargetingappropriatemarkerproteinsdiscoveredvastmajoritylocalizedwithincompartmentscellshighlysensitivetowarddisruptioncompartmentgenerationfoodavailabilitylaysgroundworkmechanisticresearchpolyPsprovidesreliableimmunostaininghundredswormssingleexperimentCryosectioningrevealsendogenousorganellesCellbiologyImagingcryosectioncuticleendosomefreeze-crackstaininglysosometissuesectioning

Similar Articles

Cited By