Methane cycling in temperate forests.

Kathryn Wigley, Charlotte Armstrong, Simeon J Smaill, Nicki M Reid, Laura Kiely, Steve A Wakelin
Author Information
  1. Kathryn Wigley: Scion, Private Bag 3020, Rotorua, 3046, New Zealand. Kathryn.walker@scionresearch.com.
  2. Charlotte Armstrong: Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand.
  3. Simeon J Smaill: Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand.
  4. Nicki M Reid: Scion, Private Bag 3020, Rotorua, 3046, New Zealand.
  5. Laura Kiely: Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand.
  6. Steve A Wakelin: Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand.

Abstract

Temperate forest soils are considered significant methane (CH) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH fluxes in temperate forests could help mitigate CH emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH flux and assesses the current understanding of the CH cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH flux and need to be considered in CH budgets. The literature confirmed that temperate planted forest soils are a significant CH sink, but tree stems are a small CH source. CH fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH's lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH fluxes. The variability in CH fluxes within each component of the forest, is also not well understood and has led to overestimation of CH fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH sinks and sources within temperate forests are accurately accounted for and able to be included in CH budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH cycle.

Keywords

References

  1. ISME J. 2011 Nov;5(11):1832-6 [PMID: 21593799]
  2. J Bacteriol. 2017 Jun 19;199(22):e00328-17 [PMID: 28630125]
  3. New Phytol. 2019 Feb;221(3):1447-1456 [PMID: 30267569]
  4. New Phytol. 2019 Apr;222(1):18-28 [PMID: 30394559]
  5. Nat Rev Microbiol. 2018 May;16(5):263-276 [PMID: 29398704]
  6. Environ Microbiol Rep. 2009 Oct;1(5):336-46 [PMID: 23765885]
  7. Curr Issues Mol Biol. 2019;33:57-84 [PMID: 31166185]
  8. Funct Plant Biol. 2006 Jun;33(6):521-530 [PMID: 32689259]
  9. FEMS Microbiol Ecol. 2004 Mar 1;47(3):265-77 [PMID: 19712315]
  10. Sci Total Environ. 2021 Feb 1;754:142039 [PMID: 32919316]
  11. Proc Natl Acad Sci U S A. 2017 May 23;114(21):5373-5377 [PMID: 28416657]
  12. Nat Commun. 2017 Nov 16;8(1):1567 [PMID: 29146959]
  13. Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19659-65 [PMID: 19903876]
  14. Curr Issues Mol Biol. 2019;33:23-56 [PMID: 31166184]
  15. Sci Total Environ. 2022 Feb 1;806(Pt 4):151362 [PMID: 34740653]
  16. Nat Commun. 2021 Apr 9;12(1):2127 [PMID: 33837213]
  17. Sci Total Environ. 2014 Aug 15;490:239-53 [PMID: 24858222]
  18. Nat Commun. 2023 May 30;14(1):3110 [PMID: 37253779]
  19. Physiol Plant. 2012 Mar;144(3):201-9 [PMID: 22136562]
  20. Environ Pollut. 2020 Apr;259:113955 [PMID: 32023800]
  21. Appl Environ Microbiol. 2006 Feb;72(2):1346-54 [PMID: 16461686]
  22. New Phytol. 2021 Jul;231(2):524-536 [PMID: 33780002]
  23. Glob Chang Biol. 2020 Nov;26(11):6604-6615 [PMID: 32881163]
  24. New Phytol. 2019 Apr;222(1):115-121 [PMID: 29978909]
  25. Environ Sci Technol. 2005 Jul 1;39(13):4685-91 [PMID: 16053064]
  26. Nature. 2015 Mar 12;519(7542):171-80 [PMID: 25762280]
  27. Environ Microbiol. 2008 Jul;10(7):1917-24 [PMID: 18452547]
  28. Nature. 2006 Jan 12;439(7073):187-91 [PMID: 16407949]
  29. Sci Total Environ. 2023 Apr 1;867:161437 [PMID: 36623660]
  30. Nature. 2008 Apr 10;452(7188):737-40 [PMID: 18401407]
  31. ISME Commun. 2022 Jun 30;2(1):53 [PMID: 37938662]
  32. Glob Chang Biol. 2021 Mar;27(6):1170-1180 [PMID: 33336457]
  33. Environ Microbiol Rep. 2009 Oct;1(5):285-92 [PMID: 23765881]
  34. Glob Chang Biol. 2014 Aug;20(8):2379-80 [PMID: 24343933]
  35. FEMS Microbiol Ecol. 2004 Sep 1;49(3):389-400 [PMID: 19712289]
  36. Sci Rep. 2019 Mar 8;9(1):4005 [PMID: 30850622]
  37. Science. 2012 Jan 13;335(6065):183-9 [PMID: 22246768]
  38. Nat Commun. 2012;3:1046 [PMID: 22948828]
  39. Microbiol Rev. 1996 Jun;60(2):439-71 [PMID: 8801441]
  40. PNAS Nexus. 2023 Feb 28;2(2):pgad004 [PMID: 36874277]
  41. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8587-8590 [PMID: 30082408]
  42. New Phytol. 2019 Apr;222(1):35-51 [PMID: 30521089]
  43. Environ Sci Technol. 2010 Sep 1;44(17):6614-20 [PMID: 20687598]
  44. Appl Environ Microbiol. 1993 Feb;59(2):485-90 [PMID: 16348872]
  45. Sci Rep. 2016 Mar 21;6:23410 [PMID: 26997421]
  46. Trends Microbiol. 2017 Feb;25(2):88-90 [PMID: 27986381]
  47. J Environ Qual. 1994 Sep;23(5):923-928 [PMID: 34872200]
  48. New Phytol. 2016 Dec;212(4):871-887 [PMID: 27787948]
  49. Science. 2011 Aug 19;333(6045):988-93 [PMID: 21764754]
  50. Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):358-363 [PMID: 28028242]
  51. Environ Pollut. 2020 Sep;264:114751 [PMID: 32417581]
  52. Nature. 2024 Jul;631(8022):796-800 [PMID: 39048683]
  53. ACS Earth Space Chem. 2023 Aug 23;7(9):1592-1609 [PMID: 37753209]
  54. New Phytol. 2017 Jun;214(4):1432-1439 [PMID: 28370057]
  55. Appl Environ Microbiol. 2007 Aug;73(16):5153-61 [PMID: 17574997]
  56. Sci Adv. 2020 Jan 15;6(3):eaax5343 [PMID: 31998836]
  57. Appl Environ Microbiol. 2011 Sep;77(17):6060-8 [PMID: 21742929]
  58. FEMS Microbiol Ecol. 2007 Oct;62(1):24-31 [PMID: 17725622]
  59. New Phytol. 2016 Jul;211(2):429-39 [PMID: 26918765]

Word Cloud

Created with Highcharts 10.0.0CHforestsfluxestemperateforestsinkssourcesorganiccompoundssignificantmethanewithinlitterdeadwoodvolatilewellglobalbudgetsfluxCH4TemperatesoilsconsideredtreesproductionunderstoodunderstandinggascurrentcycleMethanemagnitudeplantedsinksourcemeasurementsrequiredscalingensureImprovedhelpmitigateemissionsimproveaccuracygreenhousereviewhighlightscharacteristicsinfluenceassessesfocusmanagedspecificpurposessoilinteractioncanopy-releasedatmosphericchemistryquantifiedprocessesinvolvedfactorsbiologicalclimaticmanagementaffectingvariancediscusseduniqueextremelyvariableduestrongseasonalityhumaninterventionfeaturescontrolneedliteratureconfirmedtreestemssmallfoliagevarynegligibleincreaseCH'slifetimeatmospherein-forestinsufficientdetermineeffectresearchmechanismsmicrobialcommunitydrivingvariabilitycomponentalsoledoverestimationscaleroadmapsamplingaccuratelyaccountedableincludedmodelsaccurateestimatescontributioncyclingDeadwoodFoliageGreenhouseLitterSoilStemVolatile

Similar Articles

Cited By