Waist-to-Height Ratio as a Key Predictor for Diabetes and Hypertension in Lao PDR National Health Survey.

Kethmany Ratsavong, D R Essink, Manithong Vonglokham, Sengchanh Kounnavong, Somphou Sayasone, Wichai Aekplakorn, Suchin Worawichawong, E P Wright
Author Information
  1. Kethmany Ratsavong: Lao Tropical and Public Health Institute, Vientiane Capital, Lao PDR. ORCID
  2. D R Essink: Athena Institute, Vrije University Amsterdam, Amsterdam, The Netherlands.
  3. Manithong Vonglokham: Lao Tropical and Public Health Institute, Vientiane Capital, Lao PDR.
  4. Sengchanh Kounnavong: Lao Tropical and Public Health Institute, Vientiane Capital, Lao PDR.
  5. Somphou Sayasone: Lao Tropical and Public Health Institute, Vientiane Capital, Lao PDR.
  6. Wichai Aekplakorn: Department of Community Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
  7. Suchin Worawichawong: Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
  8. E P Wright: Guelph International Health Consulting, Amsterdam, The Netherlands.

Abstract

This study aimed to determine the potential predictive value of four noninvasive anthropometric indices in screening for the risk of diabetes and hypertension in the Lao population. The data used for this study were collected as part of the National Health Survey which used the World Health Organization's stepwise approach, covered 17 provinces and Vientiane capital, and had a representative sample of 3240 participants above 18 years old. Among the anthropometry indices tested, waist-to-height ratio (WHtR) had the highest predictive power for the prevalence of diabetes (area under the curve [AUC] = 0.73) and hypertension (AUC = 0.70). It is suitable for use in urban or rural areas and for fieldwork. The WHtR can serve as a public health and clinical screening tool, as there are no differences between sexes, ages, and ethnicities when monitoring diabetes and hypertension risk in Lao PDR, using the optimal cutoff point of 0.5 for both diabetes and hypertension.

Keywords

References

  1. Atherosclerosis. 2010 Jun;210(2):585-9 [PMID: 20053403]
  2. Twin Res. 2003 Oct;6(5):399-408 [PMID: 14624724]
  3. Front Psychol. 2021 Jul 09;12:631179 [PMID: 34305707]
  4. Int J Clin Pract. 2022 Oct 26;2022:6959359 [PMID: 36349059]
  5. Asia Pac J Public Health. 2022 Jan;34(1):36-43 [PMID: 34590882]
  6. Nutr Res Rev. 2010 Dec;23(2):247-69 [PMID: 20819243]
  7. Br J Nutr. 2008 Nov;100(5):1135-41 [PMID: 18341757]
  8. Radiology. 1982 Apr;143(1):29-36 [PMID: 7063747]
  9. Vasc Health Risk Manag. 2019 Feb 27;15:27-33 [PMID: 30881005]
  10. Obes Rev. 2012 Mar;13(3):275-86 [PMID: 22106927]
  11. Br J Nutr. 2009 Aug;102(4):632-41 [PMID: 19203416]
  12. Trop Med Int Health. 2019 Jan;24(1):65-72 [PMID: 30303580]
  13. Int J Hypertens. 2012;2012:386453 [PMID: 22888406]
  14. Lancet Oncol. 2011 Aug;12(8):785-94 [PMID: 21782509]
  15. Diabetes Res Clin Pract. 2022 Jan;183:109151 [PMID: 34863718]
  16. J Med Assoc Thai. 2012 Sep;95(9):1156-66 [PMID: 23140032]
  17. Turk J Emerg Med. 2023 Oct 03;23(4):195-198 [PMID: 38024184]
  18. Diabetes Care. 2005 Sep;28(9):2249-51 [PMID: 16123501]
  19. Int J Epidemiol. 2010 Aug;39(4):1045-7 [PMID: 20488882]
  20. BMC Health Serv Res. 2019 Jul 4;19(1):449 [PMID: 31272432]
  21. BMJ Open. 2016 Mar 14;6(3):e010159 [PMID: 26975935]
  22. Glob Health Action. 2020 Jul;13(sup2):1777000 [PMID: 32741341]
  23. Front Endocrinol (Lausanne). 2022 Apr 05;13:869225 [PMID: 35450422]
  24. Clin Nutr ESPEN. 2020 Aug;38:99-110 [PMID: 32690186]
  25. Stat Med. 2008 Jan 30;27(2):297-315 [PMID: 17624866]
  26. BMJ. 2018 Mar 29;360:k1274 [PMID: 29599212]
  27. Obesity (Silver Spring). 2008 Dec;16(12):2754-9 [PMID: 18927550]

MeSH Term

Humans
Laos
Hypertension
Male
Female
Adult
Middle Aged
Diabetes Mellitus
Health Surveys
Waist-Height Ratio
Young Adult
Adolescent
Aged
Prevalence
Predictive Value of Tests

Word Cloud

Created with Highcharts 10.0.0diabeteshypertensionLaoscreeningHealthWHtR0PDRstudypredictivenoninvasiveindicesriskusedNationalSurvey=aimeddeterminepotentialvaluefouranthropometricpopulationdatacollectedpartWorldOrganization'sstepwiseapproachcovered17provincesVientianecapitalrepresentativesample3240participants18yearsoldAmonganthropometrytestedwaist-to-heightratiohighestpowerprevalenceareacurve[AUC]73AUC70suitableuseurbanruralareasfieldworkcanservepublichealthclinicaltooldifferencessexesagesethnicitiesmonitoringusingoptimalcutoffpoint5Waist-to-HeightRatioKeyPredictorDiabetesHypertensionBMINCDWCalternativemeasures

Similar Articles

Cited By