The Current Landscape of Artificial Intelligence in Imaging for Transcatheter Aortic Valve Replacement.

Shawn Sun, Leslie Yeh, Amir Imanzadeh, Soheil Kooraki, Arash Kheradvar, Arash Bedayat
Author Information
  1. Shawn Sun: Radiology Department, UCI Medical Center, University of California, Irvine, USA.
  2. Leslie Yeh: Independent Researcher, Anaheim, CA 92803, USA.
  3. Amir Imanzadeh: Radiology Department, UCI Medical Center, University of California, Irvine, USA.
  4. Soheil Kooraki: Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA.
  5. Arash Kheradvar: Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
  6. Arash Bedayat: Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA.

Abstract

Purpose: This review explores the current landscape of AI applications in imaging for TAVR, emphasizing the potential and limitations of these tools for (1) automating the image analysis and reporting process, (2) improving procedural planning, and (3) offering additional insight into post-TAVR outcomes. Finally, the direction of future research necessary to bridge these tools towards clinical integration is discussed.
Recent Findings: Transcatheter aortic valve replacement (TAVR) has become a pivotal treatment option for select patients with severe aortic stenosis, and its indication for use continues to broaden. Noninvasive imaging techniques such as CTA and MRA have become routine for patient selection, preprocedural planning, and predicting the risk of complications. As the current methods for pre-TAVR image analysis are labor-intensive and have significant inter-operator variability, experts are looking towards artificial intelligence (AI) as a potential solution.
Summary: AI has the potential to significantly enhance the planning, execution, and post-procedural follow up of TAVR. While AI tools are promising, the irreplaceable value of nuanced clinical judgment by skilled physician teams must not be overlooked. With continued research, collaboration, and careful implementation, AI can become an integral part in imaging for TAVR, ultimately improving patient care and outcomes.

Keywords

References

  1. Ann Thorac Surg. 2019 Apr;107(4):1097-1103 [PMID: 30529671]
  2. J Thorac Cardiovasc Surg. 2021 Oct;162(4):1075-1083.e1 [PMID: 32222410]
  3. JACC Cardiovasc Interv. 2023 Aug 28;16(16):1990-2000 [PMID: 37648347]
  4. EBioMedicine. 2023 Oct;96:104794 [PMID: 37696216]
  5. J Am Coll Cardiol. 2023 Nov 28;82(22):2163-2165 [PMID: 37877907]
  6. Cardiovasc Eng Technol. 2021 Dec;12(6):576-588 [PMID: 34859378]
  7. J Am Coll Cardiol. 2022 Aug 9;80(6):613-626 [PMID: 35926935]
  8. Int J Cardiovasc Imaging. 2024 May;40(5):951-966 [PMID: 38700819]
  9. Lancet Digit Health. 2022 Apr;4(4):e256-e265 [PMID: 35337643]
  10. JTCVS Tech. 2023 Nov 30;23:5-17 [PMID: 38352010]
  11. Future Cardiol. 2021 Mar;17(2):183-187 [PMID: 32933328]
  12. Phys Eng Sci Med. 2024 Jun;47(2):643-649 [PMID: 38294678]
  13. Radiology. 2022 Jan;302(1):50-58 [PMID: 34609200]
  14. N Engl J Med. 2019 May 2;380(18):1695-1705 [PMID: 30883058]
  15. Catheter Cardiovasc Interv. 2023 Nov;102(6):1140-1148 [PMID: 37668110]
  16. JACC Cardiovasc Imaging. 2023 Jun;16(6):837-855 [PMID: 36881428]
  17. JACC Cardiovasc Imaging. 2020 Apr;13(4):1087-1090 [PMID: 31864981]
  18. J Cardiovasc Comput Tomogr. 2019 Jan - Feb;13(1):1-20 [PMID: 30630686]
  19. Circ Cardiovasc Interv. 2015 Jul;8(7):e002025 [PMID: 26160830]
  20. J Thorac Cardiovasc Surg. 2020 Mar;159(3):829-838.e3 [PMID: 31230808]
  21. AJR Am J Roentgenol. 2021 Jan;216(1):57-65 [PMID: 33170737]
  22. J Clin Med. 2023 Jul 19;12(14): [PMID: 37510889]
  23. Eur J Radiol. 2018 Aug;105:209-215 [PMID: 30017282]
  24. JACC Cardiovasc Imaging. 2021 Jan;14(1):41-60 [PMID: 32861647]
  25. J Am Coll Radiol. 2023 Nov;20(11S):S501-S512 [PMID: 38040467]
  26. J Soc Cardiovasc Angiogr Interv. 2024 Mar 26;3(3Part B):101289 [PMID: 39131227]
  27. Radiology. 2021 Oct;301(1):105-112 [PMID: 34342499]
  28. Struct Heart. 2022 Jun 03;6(2):100032 [PMID: 37273734]
  29. Eur J Cardiothorac Surg. 2014 Nov;46(5):808-16 [PMID: 25079769]
  30. Diagnostics (Basel). 2023 Oct 11;13(20): [PMID: 37892002]
  31. N Engl J Med. 2023 Nov 23;389(21):1949-1960 [PMID: 37874020]
  32. Cardiovasc Digit Health J. 2021 Mar 18;2(3):156-163 [PMID: 35265904]
  33. Radiographics. 2015 Jan-Feb;35(1):299 [PMID: 25590409]
  34. Cardiovasc Revasc Med. 2024 Aug;65:25-31 [PMID: 38467531]
  35. Circulation. 2022 Mar 22;145(12):874-876 [PMID: 35312381]
  36. Circulation. 2021 Feb 2;143(5):e35-e71 [PMID: 33332149]
  37. Circulation. 2014 Jan 14;129(2):244-53 [PMID: 24421359]
  38. Sci Rep. 2024 May 31;14(1):12526 [PMID: 38822074]
  39. Sci Rep. 2023 Jun 24;13(1):10252 [PMID: 37355688]
  40. AJR Am J Roentgenol. 2022 Mar;218(3):444-452 [PMID: 34643107]
  41. JACC Case Rep. 2022 Feb 02;4(3):170-177 [PMID: 35199011]
  42. Eur Heart J Suppl. 2022 Mar 30;24(Suppl B):B36-B41 [PMID: 35370499]
  43. Eur Heart J. 2023 Nov 14;44(43):4592-4604 [PMID: 37611002]
  44. Eur Heart J Digit Health. 2021 Dec 07;3(1):20-28 [PMID: 36713993]
  45. JACC Cardiovasc Imaging. 2023 Mar;16(3):401-404 [PMID: 36889853]
  46. JAMA Cardiol. 2016 Apr 1;1(1):46-52 [PMID: 27437653]
  47. J Cardiovasc Comput Tomogr. 2021 Nov-Dec;15(6):470-476 [PMID: 34127407]

Grants

  1. R01 HL153724/NHLBI NIH HHS
  2. R01 HL157631/NHLBI NIH HHS
  3. R01 HL162687/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0AITAVRimagingpotentialtoolsplanningTranscatheteraorticbecomecurrentimageanalysisimprovingoutcomesresearchtowardsclinicalvalvereplacementpatientintelligenceArtificialPurpose:reviewexploreslandscapeapplicationsemphasizinglimitations1automatingreportingprocess2procedural3offeringadditionalinsightpost-TAVRFinallydirectionfuturenecessarybridgeintegrationdiscussedRecentFindings:pivotaltreatmentoptionselectpatientsseverestenosisindicationusecontinuesbroadenNoninvasivetechniquesCTAMRAroutineselectionpreproceduralpredictingriskcomplicationsmethodspre-TAVRlabor-intensivesignificantinter-operatorvariabilityexpertslookingartificialsolutionSummary:significantlyenhanceexecutionpost-proceduralfollowpromisingirreplaceablevaluenuancedjudgmentskilledphysicianteamsmustoverlookedcontinuedcollaborationcarefulimplementationcanintegralpartultimatelycareCurrentLandscapeIntelligenceImagingAorticValveReplacementComputedtomographyCT

Similar Articles

Cited By