The use of metabolomics and machine learning algorithms to predict post-transplant diabetes mellitus in renal transplant patients on Tacrolimus therapy.

Dan Burghelea, Tudor Moisoiu, Cristina Ivan, Alina Elec, Adriana Munteanu, Raluca Tabrea, Oana Antal, Teodor Paul Kacso, Carmen Socaciu, Florin Ioan Elec, Ina Maria Kacso
Author Information
  1. Dan Burghelea: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  2. Tudor Moisoiu: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  3. Cristina Ivan: "Regina Maria" Hospital, Cluj-Napoca, Romania.
  4. Alina Elec: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  5. Adriana Munteanu: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  6. Raluca Tabrea: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  7. Oana Antal: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  8. Teodor Paul Kacso: Department of Nephrology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
  9. Carmen Socaciu: Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Romania.
  10. Florin Ioan Elec: Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, Romania.
  11. Ina Maria Kacso: Department of Nephrology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Abstract

Background and aim: Tacrolimus (TAC) has significantly improved kidney graft survival following transplantation, though it is associated with adverse side effects. The most prevalent complication resulting from excessive TAC exposure is the onset of de novo diabetes mellitus (DM), a condition that can negatively impact both renal graft function and patient outcomes. De novo DM is linked to an increased risk of chronic transplant dysfunction, as well as cardiovascular morbidity and mortality. Although the underlying mechanisms remain unclear, emerging research in the field of omics shows promise. The aim of this study was to investigate the metabolomic profile of kidney transplant patients who developed de novo DM, in comparison to those who did not, following TAC exposure, using untargeted metabolomic analysis through ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) and machine learning algorithms.
Methods: A cohort of 34 kidney transplant patients on a Tacrolimus regimen for at least 6 months was enrolled in the study, with serum samples collected from each patient. Comprehensive profiling of serum metabolites was performed, enabling the classification of patients into de novo diabetes mellitus and non diabetes groups. The metabolomic analysis of serum was conducted using UHPLC-MS.
Results: Of the 34 patients, 16 were diagnosed with TAC-induced diabetes. A total of 334 metabolites were identified in the serum samples, of which 10 demonstrated a significant correlation with the de novo diabetes mellitus group. Most of these metabolites were linked to alterations in lipid metabolism.
Conclusion: The application of metabolomics in kidney transplant patients undergoing a Tacrolimus regimen is both feasible and effective in identifying metabolites associated with de novo diabetes mellitus. This approach may provide valuable insights into the metabolic alterations underlying TAC-induced diabetes.

Keywords

References

  1. J Diabetes Res. 2020 Jan 10;2020:6542346 [PMID: 31998808]
  2. World J Gastroenterol. 2016 Feb 14;22(6):2133-41 [PMID: 26877618]
  3. Minerva Urol Nefrol. 2003 Mar;55(1):33-42 [PMID: 12773965]
  4. Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Dec;1863(12):1458-1468 [PMID: 30251703]
  5. Ther Drug Monit. 2022 Oct 1;44(5):606-614 [PMID: 35344525]
  6. Ann Lab Med. 2018 Mar;38(2):85-94 [PMID: 29214751]
  7. Am J Transplant. 2009 Nov;9 Suppl 3:S1-155 [PMID: 19845597]
  8. Nat Rev Nephrol. 2015 Aug;11(8):465-77 [PMID: 25917553]
  9. J Gastrointestin Liver Dis. 2022 Mar 19;31(1):40-47 [PMID: 35306561]
  10. Clin Med (Lond). 2019 Sep;19(5):392-395 [PMID: 31530687]
  11. J Clin Med. 2020 Jul 11;9(7): [PMID: 32664531]
  12. Environ Int. 2023 Oct;180:108198 [PMID: 37716341]
  13. Clin Kidney J. 2021 Jul 10;15(1):5-13 [PMID: 35265335]
  14. Diabetes Care. 2003 Apr;26(4):1123-8 [PMID: 12663584]
  15. Acta Diabetol. 2018 Aug;55(8):763-779 [PMID: 29619563]
  16. Biochem Pharmacol. 2023 Feb;208:115379 [PMID: 36525991]
  17. Environ Int. 2021 Oct;155:106665 [PMID: 34098336]
  18. PLoS One. 2015 Nov 23;10(11):e0143405 [PMID: 26599323]
  19. Endocrinology. 2013 Jan;154(1):65-76 [PMID: 23183172]
  20. Cells. 2021 Sep 03;10(9): [PMID: 34571947]
  21. Clin Lab. 2015;61(9):1303-15 [PMID: 26554251]
  22. J Lipids. 2024 Jan 27;2024:6730504 [PMID: 38312939]
  23. Transpl Int. 2020 Feb;33(2):161-173 [PMID: 31536654]
  24. Drug Saf. 1997 Apr;16(4):242-57 [PMID: 9113492]
  25. Curr Drug Metab. 2018;19(6):513-522 [PMID: 29380698]
  26. Ann Med. 2016;48(1-2):89-102 [PMID: 26883715]
  27. BMC Nephrol. 2020 Apr 6;21(1):123 [PMID: 32252677]
  28. Adv Chronic Kidney Dis. 2021 Nov;28(6):596-605 [PMID: 35367028]
  29. Xenobiotica. 2013 Jul;43(7):641-9 [PMID: 23278282]
  30. Prostaglandins Leukot Essent Fatty Acids. 1995 Oct;53(4):301-8 [PMID: 8577784]
  31. Metabolism. 2018 Jan;78:1-12 [PMID: 28941595]
  32. Cells. 2021 Oct 21;10(11): [PMID: 34831057]
  33. Ecotoxicol Environ Saf. 2022 Apr 1;234:113386 [PMID: 35286959]
  34. Expert Opin Drug Metab Toxicol. 2020 Sep;16(9):769-782 [PMID: 32721175]
  35. PLoS One. 2022 Jun 24;17(6):e0269920 [PMID: 35749380]
  36. Metabolites. 2016 Jan 15;6(1): [PMID: 26784247]
  37. J Transl Med. 2019 Dec 13;17(1):418 [PMID: 31836014]
  38. Transplant Proc. 2021 Nov;53(9):2782-2785 [PMID: 34690002]
  39. Case Rep Endocrinol. 2018 May 9;2018:4606491 [PMID: 29854487]
  40. Front Med (Lausanne). 2021 Nov 25;8:769335 [PMID: 34926510]
  41. Circ Res. 2020 May 22;126(11):1613-1627 [PMID: 32437301]

Word Cloud

Created with Highcharts 10.0.0diabetesnovomellituspatientsTacrolimusdetransplantkidneyserummetabolitesTACDMmetabolomicmetabolomicsgraftfollowingassociatedexposurerenalpatientlinkedunderlyingstudyusinganalysisUHPLC-MSmachinelearningalgorithms34regimensamplesTAC-inducedalterationslipidmetabolismBackgroundaim:significantlyimprovedsurvivaltransplantationthoughadversesideeffectsprevalentcomplicationresultingexcessiveonsetconditioncannegativelyimpactfunctionoutcomesDeincreasedriskchronicdysfunctionwellcardiovascularmorbiditymortalityAlthoughmechanismsremainunclearemergingresearchfieldomicsshowspromiseaiminvestigateprofiledevelopedcomparisonuntargetedultra-high-performanceliquidchromatography-massspectrometryMethods:cohortleast6monthsenrolledcollectedComprehensiveprofilingperformedenablingclassificationnongroupsconductedResults:16diagnosedtotal334identified10demonstratedsignificantcorrelationgroupConclusion:applicationundergoingfeasibleeffectiveidentifyingapproachmayprovidevaluableinsightsmetabolicusepredictpost-transplanttherapy

Similar Articles

Cited By