Whole genome sequencing of and molecular mechanisms of sugar and starch synthesis.

Rongchen Li, Xiaolu Huang, Liping Yang, Jianming Liao, Xiaojuan Wei, Junji Li, Guangyu Zeng, Dan Liu, Zhuogong Shi, Zhiheng Zhao
Author Information
  1. Rongchen Li: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  2. Xiaolu Huang: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  3. Liping Yang: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  4. Jianming Liao: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  5. Xiaojuan Wei: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  6. Junji Li: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  7. Guangyu Zeng: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.
  8. Dan Liu: Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China.
  9. Zhuogong Shi: Research Center for Plateau Characteristic Agriculture in Northeast Yunnan, College of Agriculture and Life Sciences, Zhaotong University, Zhaotong, China.
  10. Zhiheng Zhao: Guangxi Forestry Research Institute, Guangxi Forestry Research Institute, Guangxi Forestry Laboratory, Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Nanning, China.

Abstract

The chestnut tree exhibits self-incompatibility, where the selection of the male parent (pollen xenia) significantly affects seed starch metabolism, as well as fruit yield and quality. Despite its importance, the molecular mechanisms underlying pollen xenia remains largely unknown. In this study, we utilized the 'Lan You' variety of to construct a high-quality reference genome. As a result, a first Telomere-to-telomere (T2T) gap-free genome for this species was successfully assembled. A total of 560 transcription factors and 22 structural genes were identified as consistent across the TO-GCNs, indicating a consistent regulation pattern in the co-expression of genes involved in starch accumulation. These networks were further divided into three sub-networks: T1, T2, and T3. Among these, the T1 and T2 sub-networks exhibited a higher number of structural genes with consistent regulation patterns and were closely associated with sugar biosynthesis. The gene SBE () was identified as the hub gene with the highest degree of connectivity, encoding a key rate-limiting enzyme in the amylopectin biosynthesis pathway. This study provides a foundation for further research on population genetics, genetic improvement, and strategies aimed at enhancing yield and quality.

Keywords

References

  1. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  2. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  3. Bioinformatics. 2008 Mar 1;24(5):637-44 [PMID: 18218656]
  4. Nature. 2009 Jan 29;457(7229):551-6 [PMID: 19189423]
  5. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  6. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  7. Hortic Res. 2020 Jun 1;7(1):94 [PMID: 32528706]
  8. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7 [PMID: 271968]
  9. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  10. Mol Biol Evol. 2013 Aug;30(8):1987-97 [PMID: 23709260]
  11. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  12. Int J Biol Macromol. 2017 Apr;97:679-687 [PMID: 28122205]
  13. Annu Rev Plant Biol. 2020 Apr 29;71:217-245 [PMID: 32075407]
  14. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  15. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  16. Genome Biol. 2020 Sep 10;21(1):241 [PMID: 32912315]
  17. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  18. Science. 2002 Apr 5;296(5565):92-100 [PMID: 11935018]
  19. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  20. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  21. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  22. Carbohydr Polym. 2020 Feb 15;230:115656 [PMID: 31887861]
  23. PLoS One. 2017 May 23;12(5):e0177792 [PMID: 28542293]
  24. Mol Ecol Resour. 2021 Apr;21(3):955-968 [PMID: 33325619]
  25. Int J Mol Sci. 2019 Feb 15;20(4): [PMID: 30781446]
  26. Sci Data. 2023 May 9;10(1):259 [PMID: 37156769]
  27. Nat Commun. 2020 Jul 6;11(1):3375 [PMID: 32632155]
  28. Hortic Res. 2020 Jun 1;7(1):95 [PMID: 32528707]
  29. G3 (Bethesda). 2020 Oct 5;10(10):3565-3574 [PMID: 32847817]
  30. Sci Rep. 2021 Feb 11;11(1):3570 [PMID: 33574357]
  31. Mol Plant. 2022 Dec 5;15(12):1841-1851 [PMID: 36307977]
  32. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  33. Genome Res. 2008 Jan;18(1):188-96 [PMID: 18025269]
  34. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  35. BMC Genomics. 2021 Aug 13;22(1):617 [PMID: 34388974]
  36. Nat Rev Genet. 2024 Sep;25(9):658-670 [PMID: 38649458]
  37. Front Plant Sci. 2022 Jul 25;13:916550 [PMID: 35958219]
  38. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  39. Nat Rev Genet. 2016 May 17;17(6):333-51 [PMID: 27184599]
  40. Bioinformatics. 2020 Apr 1;36(7):2253-2255 [PMID: 31778144]
  41. Nat Rev Genet. 2017 Oct;18(10):624-636 [PMID: 28736437]
  42. Cell Syst. 2016 Jul;3(1):99-101 [PMID: 27467250]
  43. J Agric Food Chem. 2015 Jan 28;63(3):929-42 [PMID: 25537355]
  44. Elife. 2016 Nov 22;5: [PMID: 27871361]
  45. Nat Commun. 2020 May 19;11(1):2494 [PMID: 32427850]
  46. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  47. Gigascience. 2020 Sep 1;9(9): [PMID: 32893860]
  48. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  49. Nucleic Acids Res. 2016 Jul 8;44(12):e113 [PMID: 27131372]
  50. Gigascience. 2019 Sep 1;8(9): [PMID: 31513707]
  51. Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52 [PMID: 16868079]
  52. Nucleic Acids Res. 2018 Jan 4;46(D1):D1190-D1196 [PMID: 29069403]
  53. Plant Cell. 2014 Jun 24;26(6):2420-2429 [PMID: 24963058]
  54. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  55. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3091-3099 [PMID: 30718437]
  56. PeerJ. 2017 Mar 29;5:e3148 [PMID: 28367378]

Word Cloud

Created with Highcharts 10.0.0starchgenomepollenxeniagenesconsistentsugargenechestnutmetabolismyieldqualitymolecularmechanismsstudystructuralidentifiedregulationco-expressionT1T2biosynthesistreeexhibitsself-incompatibilityselectionmaleparentsignificantlyaffectsseedwellfruitDespiteimportanceunderlyingremainslargelyunknownutilized'LanYou'varietyconstructhigh-qualityreferenceresultfirstTelomere-to-telomereT2Tgap-freespeciessuccessfullyassembledtotal560transcriptionfactors22acrossTO-GCNsindicatingpatterninvolvedaccumulationnetworksdividedthreesub-networks:T3Amongsub-networksexhibitedhighernumberpatternscloselyassociatedSBEhubhighestdegreeconnectivityencodingkeyrate-limitingenzymeamylopectinpathwayprovidesfoundationresearchpopulationgeneticsgeneticimprovementstrategiesaimedenhancingWholesequencingsynthesistelomere-to-telomereassemblytime-orderednetwork

Similar Articles

Cited By