Possible roles of CAHS proteins from Tardigrade in osmotic stress tolerance in mammalian cells.

Takahiro Bino, Yuhei Goto, Gembu Maryu, Kazuharu Arakawa, Kazuhiro Aoki
Author Information
  1. Takahiro Bino: Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences.
  2. Yuhei Goto: Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies).
  3. Gembu Maryu: Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences.
  4. Kazuharu Arakawa: Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences.
  5. Kazuhiro Aoki: Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences.

Abstract

Anhydrobiosis, a phenomenon in which organisms survive extreme dehydration by entering a reversible ametabolic state, is a remarkable example of survival strategies. This study focuses on anhydrobiosis in tardigrades, which are known for their resilience to severe environmental conditions. Tardigrades utilize several protective mechanisms against desiccation, notably the constitutive expression of cytoplasmic abundant heat soluble (CAHS) proteins in Ramazzottius varieornatus. These proteins share similarities in their amphiphatic alpha helices with late embryogenesis abundant (LEA) proteins, but differ significantly in their amino acid sequences. In this study, we further explored the functionality of CAHS proteins by analyzing their role in aggregation and tolerance to hyperosmotic stress in mammalian cells. Using live cell imaging, we examined the subcellular localization of several CAHS and LEA proteins in response to hyperosmotic stress. The expression of CAHS1, CAHS3, and CAHS8 tended to enhance the resilience to the hyperosmotic conditions. These findings not only deepen our understanding of the molecular mechanisms of anhydrobiosis but also highlight the potential of CAHS proteins as cryoprotectants.Key words: anhydrobiosis, Tardigrades, live imaging, disordered proteins, desiccation tolerance.

Keywords

References

  1. Biochem J. 2005 May 15;388(Pt 1):151-7 [PMID: 15631617]
  2. Planta. 2015 Aug;242(2):369-78 [PMID: 26142353]
  3. Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2216739120 [PMID: 36693101]
  4. J Biol Chem. 2010 Nov 12;285(46):35889-99 [PMID: 20833722]
  5. BMC Genomics. 2022 May 28;23(1):405 [PMID: 35643424]
  6. Front Physiol. 2020 Oct 23;11:592016 [PMID: 33192606]
  7. PLoS One. 2015 Feb 12;10(2):e0118272 [PMID: 25675104]
  8. Cell Stress Chaperones. 2016 Jan;21(1):9-18 [PMID: 26334984]
  9. PLoS Biol. 2022 Sep 6;20(9):e3001780 [PMID: 36067153]
  10. ACS Synth Biol. 2022 Mar 18;11(3):1292-1302 [PMID: 35176859]
  11. Comp Biochem Physiol B Biochem Mol Biol. 2010 Jun;156(2):115-21 [PMID: 20206711]
  12. Cell. 2018 Nov 29;175(6):1467-1480.e13 [PMID: 30500534]
  13. Sci Rep. 2016 Jun 21;6:27697 [PMID: 27323850]
  14. Gene. 1991 Dec 15;108(2):193-9 [PMID: 1660837]
  15. Mol Cell. 2017 Mar 16;65(6):975-984.e5 [PMID: 28306513]
  16. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  17. Annu Rev Physiol. 1998;60:73-103 [PMID: 9558455]
  18. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  19. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  20. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6428-33 [PMID: 12746499]
  21. Sci Rep. 2021 Nov 4;11(1):21328 [PMID: 34737320]
  22. PLoS Biol. 2017 Jul 27;15(7):e2002266 [PMID: 28749982]
  23. Biochem Biophys Res Commun. 2006 Sep 15;348(1):56-61 [PMID: 16875677]
  24. J Biosci. 2011 Dec;36(5):939-50 [PMID: 22116292]
  25. Cell Stress Chaperones. 2010 Jul;15(4):423-30 [PMID: 19943197]
  26. PLoS One. 2015 Dec 21;10(12):e0144803 [PMID: 26690982]
  27. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):149-91 [PMID: 13633975]
  28. Physiol Rev. 2007 Oct;87(4):1441-74 [PMID: 17928589]
  29. Proteomics. 2018 Nov;18(21-22):e1800067 [PMID: 30144288]
  30. Annu Rev Entomol. 2015 Jan 7;60:59-75 [PMID: 25341107]
  31. PLoS One. 2010 Nov 16;5(11):e14008 [PMID: 21103355]
  32. Cell Struct Funct. 2024 Dec 14;49(2):123-133 [PMID: 39566968]
  33. Annu Rev Anim Biosci. 2022 Feb 15;10:17-37 [PMID: 35167318]
  34. Angew Chem Int Ed Engl. 2022 Jan 3;61(1):e202109961 [PMID: 34750927]
  35. Genetics. 2004 Feb;166(2):895-9 [PMID: 15020474]
  36. FEBS Lett. 2003 Oct 23;553(3):387-90 [PMID: 14572656]
  37. Genes Cells. 2019 Dec;24(12):768-780 [PMID: 31608545]

MeSH Term

Tardigrada
Animals
Osmotic Pressure
Humans
Amino Acid Sequence

Word Cloud

Created with Highcharts 10.0.0proteinsCAHSanhydrobiosistoleranceTardigradesdesiccationhyperosmoticstressliveimagingstudyresilienceconditionsseveralmechanismsexpressionabundantLEAmammaliancellsdisorderedAnhydrobiosisphenomenonorganismssurviveextremedehydrationenteringreversibleametabolicstateremarkableexamplesurvivalstrategiesfocusestardigradesknownsevereenvironmentalutilizeprotectivenotablyconstitutivecytoplasmicheatsolubleRamazzottiusvarieornatussharesimilaritiesamphiphaticalphaheliceslateembryogenesisdiffersignificantlyaminoacidsequencesexploredfunctionalityanalyzingroleaggregationUsingcellexaminedsubcellularlocalizationresponseCAHS1CAHS3CAHS8tendedenhancefindingsdeepenunderstandingmolecularalsohighlightpotentialcryoprotectantsKeywords:PossiblerolesTardigradeosmotic

Similar Articles

Cited By