Reconstructing the Tropical Pacific Upper Ocean Using Online Data Assimilation With a Deep Learning Model.

Zilu Meng, Gregory J Hakim
Author Information
  1. Zilu Meng: Department of Atmospheric Sciences University of Washington Seattle WA USA. ORCID
  2. Gregory J Hakim: Department of Atmospheric Sciences University of Washington Seattle WA USA. ORCID

Abstract

A deep learning (DL) model, based on a transformer architecture, is trained on a climate-model data set and compared with a standard linear inverse model (LIM) in the tropical Pacific. We show that the DL model produces more accurate forecasts compared to the LIM when tested on a reanalysis data set. We then assess the ability of an ensemble Kalman filter to reconstruct the monthly averaged upper ocean from a noisy set of 24 sea-surface temperature observations designed to mimic existing coral proxy measurements, and compare results for the DL model and LIM. Due to signal damping in the DL model, we implement a novel inflation technique by adding noise from hindcast experiments. Results show that assimilating observations with the DL model yields better reconstructions than the LIM for observation averaging times ranging from 1 month to 1 year. The improved reconstruction is due to the enhanced predictive capabilities of the DL model, which map the memory of past observations to future assimilation times.

References

  1. Sci Adv. 2023 Mar 10;9(10):eadf2827 [PMID: 36888711]
  2. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  3. Nature. 1999 Sep 23;401(6751):360-3 [PMID: 16862108]
  4. Nature. 2019 Sep;573(7775):568-572 [PMID: 31534218]
  5. Science. 2006 Dec 15;314(5806):1740-5 [PMID: 17170296]
  6. Sci Bull (Beijing). 2024 Aug 15;69(15):2323-2327 [PMID: 38719667]
  7. Nature. 2018 Jul;559(7715):535-545 [PMID: 30046070]
  8. Sci Data. 2017 Jul 11;4:170088 [PMID: 28696409]
  9. Sci Data. 2023 Sep 14;10(1):624 [PMID: 37709805]
  10. Nature. 2019 Feb;566(7743):195-204 [PMID: 30760912]
  11. Sci Data. 2024 Jan 5;11(1):36 [PMID: 38182596]

Word Cloud

Created with Highcharts 10.0.0modelDLLIMsetobservationsdatacomparedPacificshowtimesdeeplearningbasedtransformerarchitecturetrainedclimate-modelstandardlinearinversetropicalproducesaccurateforecaststestedreanalysisassessabilityensembleKalmanfilterreconstructmonthlyaveragedupperoceannoisy24sea-surfacetemperaturedesignedmimicexistingcoralproxymeasurementscompareresultsDuesignaldampingimplementnovelinflationtechniqueaddingnoisehindcastexperimentsResultsassimilatingyieldsbetterreconstructionsobservationaveragingranging1 month1 yearimprovedreconstructiondueenhancedpredictivecapabilitiesmapmemorypastfutureassimilationReconstructingTropicalUpperOceanUsingOnlineDataAssimilationDeepLearningModel

Similar Articles

Cited By

No available data.