Identification of differentially expressed genes and polymorphisms related to intramuscular oleic-to-stearic fatty acid ratio in pigs.

Jesús Valdés-Hernández, Yuliaxis Ramayo-Caldas, Magí Passols, Lourdes Criado-Mesas, Anna Castelló, Armand Sánchez, Josep M Folch
Author Information
  1. Jesús Valdés-Hernández: Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain. ORCID
  2. Yuliaxis Ramayo-Caldas: Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain. ORCID
  3. Magí Passols: Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain. ORCID
  4. Lourdes Criado-Mesas: Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain. ORCID
  5. Anna Castelló: Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain. ORCID
  6. Armand Sánchez: Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain. ORCID
  7. Josep M Folch: Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain. ORCID

Abstract

The intramuscular oleic-to-stearic fatty acid ratio (C18:1n-9/C18:0) is an important indicator of the biosynthesis and desaturation of fatty acids in muscle. By using an RNA-Seq approach in muscle samples from 32 BC1_DU (25% Iberian and 75% Duroc) pigs with divergent values (high: H and low: L) of C18:1n-9/C18:0 fatty acids ratio, a total of 81 differentially expressed genes (DEGs) were identified. Functional analyses of DEGs indicate that mainly peroxisome proliferator-activated receptor signaling pathway (associated genes: PPARG, SCD, PLIN1, and FABP3) was overrepresented. Notably, SCD is directly involved in the conversion of C18:0 to C18:1n-9, and PPARG is a transcription factor regulating lipid metabolism genes, including SCD. However, other DEGs (e.g., ACADVL, FADS3, EPHB2, HGFAC, NGFR, NR0B2, MDH1, MMAA, PPP1R1B, SFRP5, RAB30, and TRARG1) are plausible candidate genes to explain the phenotypic differences of the C18:1n-9/C18:0 ratio. Interestingly, seven genetic variants within the SCD (including the well-known AY487830:g.2228T>C SNP and other novel genotyped polymorphisms) are associated with two haplotypes. Although the haplotypes are segregating at different frequencies in the H and L groups, they do not fully explain the desaturation ratios or the SCD expression levels. A more complex model, including polyunsaturated fatty acids such as C18:2n-6, C20:4n-6, and C18:3n-3, is suggested to explain the regulation of the C18:1n-9/C18:0 desaturation ratio in porcine muscle.

Keywords

References

  1. Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H. & Zaidi, N. (2014) De novo lipogenesis in health and disease. Metabolism, 63(7), 895–902.
  2. Andrews, S. (2010) Babraham bioinformatics‐FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  3. Baeza‐Raja, B. & Akassoglou, K. (2012) Glucose homeostasis and p75NTR. Cell Cycle, 11(17), 3151–3152.
  4. Ballester, M., Cordón, R. & Folch, J.M. (2013) DAG expression: high‐throughput gene expression analysis of real‐time pcr data using standard curves for relative quantification. PLoS One, 8(11), e80385.
  5. Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57(1), 289–300.
  6. Bickel, P.E., Tansey, J.T. & Welte, M.A. (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids, 1791, 419–440.
  7. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A. et al. (2009) ClueGO: a Cytoscape plug‐in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091–1093.
  8. Blanchard, H., Legrand, P. & Pédrono, F. (2011) Fatty acid desaturase 3 (fads3) is a singular member of the fads cluster. Biochimie, 93(1), 87–90.
  9. Cameron, N.D., Enser, M., Nute, G.R., Whittington, F.M., Penman, J.C., Fisken, A.C. et al. (2000) Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science, 55(2), 187–195.
  10. Chmurzyńska, A. (2006) The multigene family of fatty acid‐binding proteins (FABPs): function, structure and polymorphism. Journal of Applied Genetics, 47(1), 39–48.
  11. Crespo‐Piazuelo, D., Criado‐Mesas, L., Revilla, M., Castelló, A., Noguera, J.L., Fernández, A.I. et al. (2020) Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Scientific Reports, 10(1), 1–17.
  12. Criado‐Mesas, L., Ballester, M., Crespo‐Piazuelo, D., Castelló, A., Fernández, A.I. & Folch, J.M. (2020) Identification of eQTLs associated with lipid metabolism in longissimus dorsi muscle of pigs with different genetic backgrounds. Scientific Reports, 10(1), 9845.
  13. Damon, M., Wyszynska‐Koko, J., Vincent, A., Hérault, F. & Lebret, B. (2012) Comparison of muscle transcriptome between pigs with divergent meat quality phenotypes identifies genes related to muscle metabolism and structure. PLoS One, 7(3), e33763.
  14. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S. et al. (2013) STAR: Ultrafast universal RNA‐Seq aligner. Bioinformatics, 29(1), 15–21.
  15. Estany, J., Ros‐Freixedes, R., Tor, M. & Pena, R.N. (2014) A functional variant in the stearoyl‐coa desaturase gene promoter enhances fatty acid desaturation in pork. PLoS One, 9(1), e86177.
  16. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048.
  17. Furuhashi, M. & Hotamisligil, G.S. (2008) Fatty acid‐binding proteins: role in metabolic diseases and potential as drug targets. Nature Reviews Drug Discovery, 7(6), 489–503.
  18. Glatz, J.F.C., Schaap, F.G., Binas, B., Bonen, A., van der Vusse, G.J. & Luiken, J.J.F.P. (2003) Cytoplasmic fatty acid‐binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiologica Scandinavica, 178(4), 367–371.
  19. Gu, H., Zhou, Y., Yang, J., Li, J., Peng, Y., Zhang, X. et al. (2021) Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition. FASEB Journal, 35(2), e21308.
  20. Guillou, H., Zadravec, D., Martin, P.G.P. & Jacobsson, A. (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Progress in Lipid Research, 49(2), 186–199.
  21. Hanhoff, T., Lücke, C. & Spener, F. (2002) Insights into binding of fatty acids by fatty acid binding proteins. Molecular and Cellular Biochemistry, 239(1–2), 45–54.
  22. Henriquez‐Rodriguez, E., Tor, M., Pena, R.N. & Estany, J. (2015) A polymorphism in the stearoyl‐CoA desaturase gene promoter increases monounsaturated fatty acid content in dry‐cured ham. Meat Science, 106, 38–43.
  23. Kassambara, A. (2023) Rstatix: Pipe‐friendly framework for basic statistical tests. R package version 0.7.2. Comprehensive R Archive Network (CRAN). Available from: https://cran.r‐project.org/package=rstatix
  24. Kassambara, A. & Mundt, F. (2020) Factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. Comprehensive R Archive Network (CRAN). Available from: https://cran.r‐project.org/package=factoextra
  25. Kloareg, M., Noblet, J. & van Milgen, J. (2007) Deposition of dietary fatty acids, de novo synthesis and anatomical partitioning of fatty acids in finishing pigs. British Journal of Nutrition, 97(1), 35–44.
  26. Li, B. & Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 1–16.
  27. Li, B., Weng, Q., Dong, C., Zhang, Z., Li, R., Liu, J. et al. (2018) A key gene, PLIN1, can affect porcine intramuscular fat content based on transcriptome analysis. Genes, 9(4), 194.
  28. Liang, R., Han, B., Li, Q., Yuan, Y., Li, J. & Sun, D. (2017) Using RNA sequencing to identify putative competing endogenous RNAs (ceRNAs) potentially regulating fat metabolism in bovine liver. Scientific Reports, 7(1), 6396.
  29. Lim, B., Tor, M., Reixach, J. & Estany, J. (2012) Age‐related changes in intramuscular and subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data. Meat Science, 91(3), 358–363.
  30. Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA‐Seq data with DESeq2. Genome Biology, 15(12), 1–21.
  31. Mach, N., Devant, M., Díaz, I., Font‐Furnols, M., Oliver, M.A., García, J.A. et al. (2006) Increasing the amount of n‐3 fatty acid in meat from young Holstein bulls through nutrition. Journal of Animal Science, 84(11), 3039–3048.
  32. Martínez‐Montes, Á.M., Fernández, A., Muñoz, M., Noguera, J.L., Folch, J.M. & Fernández, A.I. (2018) Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed. PLoS One, 13(3), e0190184.
  33. Mater, M.K., Thelen, A.P., Pan, D.A. & Jump, D.B. (1999) Sterol response element‐binding protein 1c (SREBP1c) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription. Journal of Biological Chemistry, 274(46), 32725–32732.
  34. Miller, C.W. & Ntambi, J.M. (1996) Peroxisome proliferators induce mouse liver stearoyl‐CoA desaturase 1 gene expression. Proceedings of the National Academy of Sciences, 93(18), 9443–9448.
  35. Muñoz, M., García‐Casco, J.M., Caraballo, C., Fernández‐Barroso, M.Á., Sánchez‐Esquiliche, F., Gómez, F. et al. (2018) Identification of candidate genes and regulatory factors underlying intramuscular fat content through longissimus dorsi transcriptome analyses in heavy iberian pigs. Frontiers in Genetics, 9, 413543.
  36. Nakamura, M.T., Cheon, Y., Li, Y. & Nara, T.Y. (2004) Mechanisms of regulation of gene expression by fatty acids. Lipids, 39(11), 1077–1083.
  37. Ntambi, J.M. (1999) Regulation of stearoyl‐CoA desaturase by polyunsaturated fatty acids and cholesterol. Journal of Lipid Research, 40(9), 1549–1558.
  38. Ntambi, J.M. & Miyazaki, M. (2004) Regulation of stearoyl‐CoA desaturases and role in metabolism. Progress in Lipid Research, 43(2), 91–104.
  39. Nürnberg, K., Wegner, J. & Ender, K. (1998) Factors influencing fat composition in muscle and adipose tissue of farm animals. Livestock Production Science, 56(2), 145–156.
  40. Paton, C.M. & Ntambi, J.M. (2009) Biochemical and physiological function of stearoyl‐CoA desaturase. American Journal of Physiology – Endocrinology and Metabolism, 297(1), 28–37.
  41. Puig‐Oliveras, A., Ramayo‐Caldas, Y., Corominas, J., Estellé, J., Pérez‐Montarelo, D., Hudson, N.J. et al. (2014) Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition. PLoS One, 9(6), e99720.
  42. Puig‐Oliveras, A., Revilla, M., Castelló, A., Fernández, A.I., Folch, J.M. & Ballester, M. (2016) Expression‐based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Scientific Reports, 6(1), 1–12.
  43. R Core Team. (2021) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.r‐project.org/
  44. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.
  45. Ruiz‐Carrascal, J., Ventanas, J., Cava, R., Andrés, A.I. & Garcı́a, C. (2000) Texture and appearance of dry cured ham as affected by fat content and fatty acid composition. Food Research International, 33(2), 91–95.
  46. Sargsyan, A., Doridot, L., Hannou, S.A., Tong, W., Srinivasan, H., Ivison, R. et al. (2023) HGFAC is a ChREBP‐regulated hepatokine that enhances glucose and lipid homeostasis. JCI Insight, 8(1), e153740.
  47. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.
  48. Taniguchi, M., Arakawa, A., Motoyama, M., Nakajima, I., Nii, M. & Mikawa, S. (2015) Genomic structural analysis of porcine fatty acid desaturase cluster on chromosome 2. Animal Science Journal, 86(4), 369–377.
  49. Valdés‐Hernández, J., Ramayo‐Caldas, Y., Passols, M., Sebastià, C., Criado‐Mesas, L., Crespo‐Piazuelo, D. et al. (2023) Global analysis of the association between pig muscle fatty acid composition and gene expression using RNA‐Seq. Scientific Reports, 13(1), 1–12.
  50. Wagner, N. & Wagner, K.D. (2020) The role of PPARs in disease. Cells, 9(11), 2367.
  51. Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Sheard, P.R., Richardson, R.I. et al. (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Science, 78(4), 343–358.
  52. Wood, J.D., Richardson, R.I., Nute, G.R., Fisher, A.V., Campo, M.M., Kasapidou, E. et al. (2003) Effects of fatty acids on meat quality: a review. Meat Science, 66(1), 21–32.
  53. Yee, J.K., Mao, C.S., Ross, M.G., Lee, W.N.P., Desai, M., Toda, A. et al. (2014) High oleic/stearic fatty‐acid desaturation index in cord plasma from infants of mothers with gestational diabetes. Journal of Perinatology, 34(5), 357–363.
  54. Zhang, J.Y., Qin, X., Liang, A., Kim, E., Lawrence, P., Park, W.J. et al. (2017) Fads3 modulates docosahexaenoic acid in liver and brain. Prostaglandins, Leukotrienes and Essential Fatty Acids, 123, 25–32.

Grants

  1. RYC2019-027244-I/MCIN/AEI/10.13039/501100011033
  2. PID2020-112677RB-C22/MCIN/AEI/10.13039/501100011033

Word Cloud

Created with Highcharts 10.0.0fattyratioSCDC18:1n-9/C18:0desaturationmusclegenesacidsDEGsincludingexplainintramuscularoleic-to-stearicacidpigsHLdifferentiallyexpressedassociatedPPARGlipidmetabolismpolymorphismshaplotypesimportantindicatorbiosynthesisusingRNA-Seqapproachsamples32BC1_DU25%Iberian75%Durocdivergentvalueshigh:low:total81identifiedFunctionalanalysesindicatemainlyperoxisomeproliferator-activatedreceptorsignalingpathwaygenes:PLIN1FABP3overrepresentedNotablydirectlyinvolvedconversionC18:0C18:1n-9transcriptionfactorregulatingHoweveregACADVLFADS3EPHB2HGFACNGFRNR0B2MDH1MMAAPPP1R1BSFRP5RAB30TRARG1plausiblecandidatephenotypicdifferencesInterestinglysevengeneticvariantswithinwell-knownAY487830:g2228T>CSNPnovelgenotypedtwoAlthoughsegregatingdifferentfrequenciesgroupsfullyratiosexpressionlevelscomplexmodelpolyunsaturatedC18:2n-6C20:4n-6C18:3n-3suggestedregulationporcineIdentificationrelatedindextranscriptomeswine

Similar Articles

Cited By