Heterochrony and Oophagy Underlie the Evolution of Giant Filter-Feeding Lamniform Sharks.

Joel H Gayford, Duncan J Irschick, Andrew Chin, Jodie L Rummer
Author Information
  1. Joel H Gayford: College of Science and Engineering, James Cook University, Townsville, Queensland, Australia. ORCID
  2. Duncan J Irschick: Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA.
  3. Andrew Chin: College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.
  4. Jodie L Rummer: College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.

Abstract

Evolutionary transitions toward gigantic body sizes have profound consequences for the structure and dynamics of ecological networks. Among elasmobranchs (sharks and rays), gigantism has evolved on several occasions, most notably in the iconic Megalodon (Otodus megalodon†) and the extant whale shark (Rhincodon typus), basking shark (Cetorhinus maximus), and megamouth shark (Megachasma pelagios), all of which reach total lengths exceeding 6 m and, in some cases, reach 21 m or more. Comparative phylogenetic studies suggest that filter feeding and heterothermy provide two alternative evolutionary pathways leading to gigantism in sharks. These selection-based explanations for gigantism are important; however, our understanding of evolutionary transitions in body size is fundamentally constrained without a proximate, mechanistic understanding of how the suite of adaptations necessary to facilitate gigantism evolved. Here we propose the heterochrony hypothesis for the evolution of the giant filter-feeding shark ecomorphotype. We suggest that craniofacial adaptations for oophagy in embryonic stages of lamniform sharks are retained through ontogeny in C. maximus and M. pelagios by paedomorphosis, resulting in an enlarged head and mouth relative to the rest of the body, even in adulthood. This change in developmental timing enables these taxa to optimize prey acquisition, which is thought to be the limiting factor for the evolution of gigantism in filter-feeding marine vertebrates. We discuss the concordance of this hypothesis with current developmental, morphological, and evolutionary data, and we suggest future means by which the hypothesis could be tested.

Keywords

References

  1. Curr Biol. 2024 Jun 17;34(12):2764-2772.e3 [PMID: 38834065]
  2. Philos Trans R Soc Lond B Biol Sci. 1950 Apr;234(612):247-316 [PMID: 24537280]
  3. J Exp Mar Biol Ecol. 2000 Jun 1;249(1):65-76 [PMID: 10817828]
  4. Evolution. 1987 Nov;41(6):1357-1369 [PMID: 28563603]
  5. PLoS One. 2016 Jan 15;11(1):e0146092 [PMID: 26771527]
  6. Ecol Evol. 2023 Jun 17;13(6):e10204 [PMID: 37332516]
  7. Dev Dyn. 2018 May;247(5):712-723 [PMID: 29396887]
  8. Evolution. 1988 Jan;42(1):103-117 [PMID: 28563842]
  9. Anat Rec (Hoboken). 2018 Jun;301(6):1068-1073 [PMID: 29316367]
  10. Science. 2010 Feb 19;327(5968):990-3 [PMID: 20167784]
  11. Evolution. 2015 Jan;69(1):254-63 [PMID: 25355076]
  12. Cell. 2008 Jul 11;134(1):25-36 [PMID: 18614008]
  13. Proc Biol Sci. 2015 Jul 7;282(1810): [PMID: 26085583]
  14. J Exp Biol. 2020 Jun 11;223(Pt 11): [PMID: 32366692]
  15. Curr Top Dev Biol. 2022;147:595-630 [PMID: 35337464]
  16. Evol Dev. 2023 Jul;25(4-5):257-273 [PMID: 37259250]
  17. Anat Rec (Hoboken). 2014 Apr;297(4):701-15 [PMID: 24443216]
  18. Integr Zool. 2018 Jan;13(1):21-35 [PMID: 28685945]
  19. Proc Biol Sci. 2000 Jul 22;267(1451):1481-5 [PMID: 10983835]
  20. Curr Biol. 2024 Jun 17;34(12):2773-2781.e3 [PMID: 38843829]
  21. Annu Rev Cell Dev Biol. 2012;28:743-63 [PMID: 23057749]
  22. Evolution. 2019 Mar;73(3):588-599 [PMID: 30675721]
  23. J Morphol. 2014 Aug;275(8):841-61 [PMID: 24590921]
  24. J Exp Biol. 2018 Jun 12;221(Pt 11): [PMID: 29895582]
  25. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713): [PMID: 27994127]
  26. Nat Commun. 2014 Apr 04;5:3625 [PMID: 24704703]
  27. J Fish Biol. 2012 Apr;80(5):918-51 [PMID: 22497368]
  28. J Fish Biol. 2019 Oct;95(4):992-998 [PMID: 31187501]
  29. Integr Comp Biol. 2007 Jul;47(1):55-69 [PMID: 21672820]
  30. Science. 2021 Mar 19;371(6535):1253-1256 [PMID: 33737486]
  31. Evodevo. 2014 Feb 05;5(1):8 [PMID: 24499543]
  32. Trends Ecol Evol. 2013 May;28(5):267-73 [PMID: 23337185]
  33. J Exp Zool B Mol Dev Evol. 2015 Jun;324(4):316-41 [PMID: 25111899]
  34. PLoS Biol. 2010 Aug 10;8(8):e1000451 [PMID: 20711490]
  35. J Exp Zool B Mol Dev Evol. 2022 Jan;338(1-2):87-106 [PMID: 34826199]
  36. Evolution. 2024 Jul 29;78(8):1405-1425 [PMID: 38745524]

Grants

  1. /The authors received no specific funding for this work.

MeSH Term

Animals
Sharks
Biological Evolution
Body Size
Feeding Behavior
Phylogeny

Word Cloud

Created with Highcharts 10.0.0gigantismbodysharksharkssuggestevolutionaryhypothesistransitionsevolvedmaximuspelagiosreachunderstandingsizeadaptationsevolutionfilter-feedingpaedomorphosisdevelopmentalEvolutionarytowardgiganticsizesprofoundconsequencesstructuredynamicsecologicalnetworksAmongelasmobranchsraysseveraloccasionsnotablyiconicMegalodonOtodusmegalodon†extantwhaleRhincodontypusbaskingCetorhinusmegamouthMegachasmatotallengthsexceeding6 mcases21 mComparativephylogeneticstudiesfilterfeedingheterothermyprovidetwoalternativepathwaysleadingselection-basedexplanationsimportanthoweverfundamentallyconstrainedwithoutproximatemechanisticsuitenecessaryfacilitateproposeheterochronygiantecomorphotypecraniofacialoophagyembryonicstageslamniformretainedontogenyCMresultingenlargedheadmouthrelativerestevenadulthoodchangetimingenablestaxaoptimizepreyacquisitionthoughtlimitingfactormarinevertebratesdiscussconcordancecurrentmorphologicaldatafuturemeanstestedHeterochronyOophagyUnderlieEvolutionGiantFilter-FeedingLamniformSharksElasmobranchiidevelopment

Similar Articles

Cited By