Dual Multi Scale Attention Network Optimized With Archerfish Hunting Optimization Algorithm for Diabetics Prediction.

Helina Rajini Suresh, K Anita Davamani, Hemalatha Chandrasekaran, N Prabu Sankar
Author Information
  1. Helina Rajini Suresh: Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India. ORCID
  2. K Anita Davamani: Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India. ORCID
  3. Hemalatha Chandrasekaran: Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India. ORCID
  4. N Prabu Sankar: Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India.

Abstract

Diabetes is a chronic disease that occurs when the body cannot regulate blood sugar levels. Nowadays, the screening tests for diabetes are developed using multivariate regression methods. An increasing amount of data is automatically collected to provide an opportunity for creating challenging and accurate prediction modes that are updated constantly with the help of machine learning techniques. In this manuscript, a Dual Multi Scale Attention Network optimized with Archerfish Hunting Optimization Algorithm is proposed for Diabetes Prediction (DMSAN-AHO-DP). Here, the data is gathered through PIMA Indian Diabetes Dataset (PIDD). The collected data is fed towards the preprocessing to remove the noise of input data and improves the data quality by using Contrast Limited Adaptive Histogram Equalization Filtering (CLAHEF) method. Then the preprocessed data are fed to Multi-Level Haar Wavelet Features Fusion Network (MHWFFN) based feature extraction. Then the extracted data is supplied to the Dual Multi Scale Attention Network (DMSAN) for diabetic or non-diabetic classification. The hyper parameter of Dual Multi Scale Attention Network is tuned with Archerfish Hunting Optimization (AHO) algorithm, which classifies diabetic or non-diabetic accurately. The proposed DMSAN-AHO-DP technique is implemented in Python. The efficacy of the DMSAN-AHO-DP approach is examined with some metrics, like Accuracy, F-scores, Sensitivity, Specificity, Precision, Recall, Computational time. The DMSAN-AHO-DP technique achieves 23.52%, 36.12%, 31.12% higher accuracy and 16.05%, 21.14%, 31.02% lesser error rate compared with existing models: Enhanced Deep Neural Network based Model for Diabetes Prediction (EDNN-DP), Indian PIMA Dataset using Deep Learning for Diabetes Prediction (ANN-DP), and Enhanced Support Vector Machine with Deep Neural Network Learning strategies for Diabetes Prediction (SVM-DNN-DP).

Keywords

References

  1. Anilet Bala, A., P. Aruna Priya, and V. Maik. 2021. ���Retinal Image Enhancement Using Adaptive Histogram Equalization Tuned With Nonsimilar Grouping Curvelet.��� International Journal of Imaging Systems and Technology 31, no. 2: 1050���1064.
  2. Anwar, F., M. Y. Ejaz, and A. Mosavi. 2020. ���A Comparative Analysis on Diagnosis of Diabetes Mellitus Using Different Approaches���A Survey.��� Informatics in Medicine Unlocked 21: 100482.
  3. Bavkar, V. C., and A. A. Shinde. 2021. ���Machine Learning Algorithms for Diabetes Prediction and Neural Network Method for Blood Glucose Measurement.��� Indian Journal of Science and Technology 14, no. 10: 869���880.
  4. Beghriche, T., M. Djerioui, Y. Brik, B. Attallah, and S. B. Belhaouari. 2021. ���An Efficient Prediction System for Diabetes Disease Based on Deep Neural Network.��� Complexity 2021: 1���14.
  5. Chowdary, P. B. K., and R. U. Kumar. 2021. ���An Effective Approach for Detecting Diabetes Using Deep Learning Techniques Based on Convolutional LSTM Networks.��� International Journal of Advanced Computer Science and Applications 12, no. 4: 519���525.
  6. Deepa, V., C. S. Kumar, and T. Cherian. 2022. ���Ensemble of Multi���Stage Deep Convolutional Neural Networks for Automated Grading of Diabetic Retinopathy Using Image Patches.��� Journal of King Saud University, Computer and Information Sciences 34, no. 8: 6255���6265.
  7. Fan, Y., E. Long, L. Cai, Q. Cao, X. Wu, and R. Tong. 2021. ���Machine Learning Approaches to Predict Risks of Diabetic Complications and Poor Glycemic Control in Nonadherent Type 2 Diabetes.��� Frontiers in Pharmacology 1485: 665951.
  8. Gaikwad, N., and S. Shiyamala. 2023. ���Role of Dynamic Communication for IoT Devices.��� In 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS) (pp. 1965���1973). IEEE.
  9. Gundluru, N., D. S. Rajput, K. Lakshmanna, et al. 2022. ���Enhancement of Detection of Diabetic Retinopathy Using Harris Hawks Optimization With Deep Learning Model.��� Computational Intelligence and Neuroscience 2022: 1���13.
  10. Guo, W., G. Xu, B. Liu, and Y. Wang. 2022. ���Hyperspectral Image Classification Using CNN���Enhanced Multi���Level Haar Wavelet Features Fusion Network.��� IEEE Geoscience and Remote Sensing Letters 19: 1���5.
  11. Habibi, S., M. Ahmadi, and S. Alizadeh. 2015. ���Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining.��� Global Journal of Health Science 7, no. 5: 304���310.
  12. Hanley, A. J., A. J. Karter, K. Williams, et al. 2005. ���Prediction of Type 2 Diabetes Mellitus With Alternative Definitions of the Metabolic Syndrome: The Insulin Resistance Atherosclerosis Study.��� Circulation 112, no. 24: 3713���3721. https://www.kaggle.com/uciml/pima���indians���diabetes���database.
  13. Ismail, L., and H. Materwala. 2021. ���IDMPF: Intelligent Diabetes Mellitus Prediction Framework Using Machine Learning.��� Applied Computing and Informatics. (ahead���of���print).
  14. Jadhav, A. S., P. B. Patil, and S. Biradar. 2020. ���Analysis on Diagnosing Diabetic Retinopathy by Segmenting Blood Vessels, Optic Disc and Retinal Abnormalities.��� Journal of Medical Engineering & Technology 44, no. 6: 299���316.
  15. Jayalakshmi, T., and A. Santhakumaran. 2010. ���A Novel Classification Method for Diagnosis of Diabetes Mellitus Using Artificial Neural Networks.��� In 2010 International Conference on Data Storage and Data Engineering (pp. 159���163). IEEE.
  16. Jayanthi, J., T. Jayasankar, N. Krishnaraj, N. B. Prakash, A. Sagai Francis Britto, and K. Vinoth Kumar. 2021. ���An Intelligent Particle Swarm Optimization With Convolutional Neural Network for Diabetic Retinopathy Classification Model.��� Journal of Medical Imaging and Health Informatics 11, no. 3: 803���809.
  17. Joshi, R. D., and C. K. Dhakal. 2021. ���Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches.��� International Journal of Environmental Research and Public Health 18, no. 14: 7346.
  18. Kandhasamy, J. P., and S. J. P. C. S. Balamurali. 2015. ���Performance Analysis of Classifier Models to Predict Diabetes Mellitus.��� Procedia Computer Science 47: 45���51.
  19. Kavakiotis, I., O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda. 2017. ���Machine Learning and Data Mining Methods in Diabetes Research.��� Computational and Structural Biotechnology Journal 15: 104���116.
  20. Karthick, R., M. S. Dawood, and P. Meenalochini. 2023. ���Analysis of Vital Signs Using Remote Photoplethysmography (RPPG).��� Journal of Ambient Intelligence and Humanized Computing 14: 16729���16736. https://doi.org/10.1007/s12652���023���04683���w.
  21. Karthick, R., M. Prabha, S. R. Sabapathy, D. Jiju, and R. S. Selvan. 2023. ���Inspired by Social���Spider Behavior for Microwave Filter Optimization, Swarm Optimization Algorithm.��� In 2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS), vol. 1, 1���4. IEEE.
  22. Karthick, R., and M. Sundararajan. 2021. ���SPIDER���Based Out���of���Order Execution Scheme for Ht���MPSOC.��� International Journal of Advanced Intelligence paradigms 19, no. 1: 28���41.
  23. Karthick, R., A. Senthilselvi, P. Meenalochini, and S. Senthil Pandi. 2022. ���Design and Analysis of Linear Phase Finite Impulse Response Filter Using Water Strider Optimization Algorithm in FPGA.��� Circuits, Systems, and Signal Processing 41, no. 9: 5254���5282.
  24. Kavitha, N., K. R. Soundar, R. Karthick, and J. Kohila. 2024. ���Automatic Video Captioning Using Tree Hierarchical Deep Convolutional Neural Network and ASRNN���bi���Directional LSTM.��� Computing: 1���20.
  25. Kiruthiga, B., R. Karthick, I. Manju, and K. Kondreddi. 2024. ���Optimizing Harmonic Mitigation for Smooth Integration of Renewable Energy: A Novel Approach Using Atomic Orbital Search and Feedback Artificial Tree Control.��� Protection and Control of Modern Power Systems 9, no. 4: 160���176.
  26. Kopitar, L., P. Kocbek, L. Cilar, A. Sheikh, and G. Stiglic. 2020. ���Early Detection of Type 2 Diabetes Mellitus Using Machine Learning���Based Prediction Models.��� Scientific Reports 10, no. 1: 11981.
  27. Meenalochini, P., R. Karthick, and E. Sakthivel. 2023. ���An Efficient Control Strategy for an Extended Switched Coupled Inductor Quasi���Z���Source Inverter for 3 �� Grid Connected System.��� Journal of Circuits, Systems and Computers 32, no. 11: 2450011.
  28. Nagaraj, P., and P. Deepalakshmi. 2021. ���Diabetes Prediction Using Enhanced SVM and Deep Neural Network Learning Techniques: An Algorithmic Approach for Early Screening of Diabetes.��� International Journal of Healthcare Information Systems and Informatics (IJHISI) 16, no. 4: 1���20.
  29. Naz, H., and S. Ahuja. 2020. ���Deep Learning Approach for Diabetes Prediction Using PIMA Indian Dataset.��� Journal of Diabetes & Metabolic Disorders 19: 391���403.
  30. Pandi, S. S., A. Senthilselvi, T. Kumaragurubaran, and S. Dhanasekaran. 2024. ���Self���Attention���Based Generative Adversarial Network Optimized With Color Harmony Algorithm for Brain Tumor Classification.��� Electromagnetic Biology and Medicine 43, no. 1���2: 31���45.
  31. Rajagopal, R. K., R. Karthick, P. Meenalochini, and T. Kalaichelvi. 2023. ���Deep Convolutional Spiking Neural Network Optimized with Arithmetic Optimization Algorithm for Lung Disease Detection Using Chest X���ray Images.��� Biomedical Signal Processing and Control 1, no. 79: 104197.
  32. Rehman, Z. U., S. S. Naqvi, T. M. Khan, M. Arsalan, M. A. Khan, and M. A. Khalil. 2019. ���Multi���parametric Optic Disc Segmentation Using Superpixel Based Feature Classification.��� Expert Systems with Applications 120: 461���473.
  33. Vives���Boix, V., and D. Ruiz���Fernandez. 2021. ���Diabetic Retinopathy Detection Through Convolutional Neural Networks With Synaptic Metaplasticity.��� Computer Methods and Programs in Biomedicine 206: 106094.
  34. Wang, L., X. Wang, A. Chen, X. Jin, and H. Che. 2020. ���Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the XGBoost Model.��� In Healthcare, vol. 8, 247. MDPI.
  35. Wang, W., S. Wang, Y. Li, and Y. Jin. 2021. ���Adaptive Multi���Scale Dual Attention Network for Semantic Segmentation.��� Neurocomputing 460: 39���49.
  36. Zhou, H., R. Myrzashova, and R. Zheng. 2020. ���Diabetes Prediction Model Based on an Enhanced Deep Neural Network.��� EURASIP Journal on Wireless Communications and Networking 2020: 1���13.
  37. Zitouni, F., S. Harous, A. Belkeram, and L. E. B. Hammou. 2022. ���The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization.��� Arabian Journal for Science and Engineering 47, no. 2: 2513���2553.

MeSH Term

Algorithms
Humans
Diabetes Mellitus
Machine Learning
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0dataNetworkDiabetesPredictionDualMultiScaleAttentionDMSAN-AHO-DPusingArcherfishHuntingOptimizationDeepcollectedpredictionAlgorithmproposedPIMAIndianDatasetfedHaarbaseddiabeticnon-diabetictechnique12%31EnhancedNeuralLearningnetworkchronicdiseaseoccursbodyregulatebloodsugarlevelsNowadaysscreeningtestsdiabetesdevelopedmultivariateregressionmethodsincreasingamountautomaticallyprovideopportunitycreatingchallengingaccuratemodesupdatedconstantlyhelpmachinelearningtechniquesmanuscriptoptimizedgatheredPIDDtowardspreprocessingremovenoiseinputimprovesqualityContrastLimitedAdaptiveHistogramEqualizationFilteringCLAHEFmethodpreprocessedMulti-LevelWaveletFeaturesFusionMHWFFNfeatureextractionextractedsuppliedDMSANclassificationhyperparametertunedAHOalgorithmclassifiesaccuratelyimplementedPythonefficacyapproachexaminedmetricslikeAccuracyF-scoresSensitivitySpecificityPrecisionRecallComputationaltimeachieves2352%36higheraccuracy1605%2114%02%lessererrorratecomparedexistingmodels:ModelEDNN-DPANN-DPSupportVectorMachinestrategiesSVM-DNN-DPOptimizedDiabeticsarcherfishhuntingoptimizationdiabeticsdualmultiscaleattentionmulti���levelwaveletfeaturesfusion

Similar Articles

Cited By