Kinetic and Isothermal Analysis of the Adsorptive Elimination of Direct Yellow 26 Dye Utilizing Activated Bioadsorbent From Textile Effluent.

Mirza Nadeem Ahmad, Sohail Nadeem, Mohsin Javed, Ammar Zidan, Muhammad Naveed Anjum, Muhammad Fayyaz Farid, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Abd-ElAziem Farouk, Salman Aloufi
Author Information
  1. Mirza Nadeem Ahmad: Department of Applied Chemistry, Government College University, Faisalabad, Pakistan.
  2. Sohail Nadeem: Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan.
  3. Mohsin Javed: Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan.
  4. Ammar Zidan: Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq.
  5. Muhammad Naveed Anjum: Department of Applied Chemistry, Government College University, Faisalabad, Pakistan.
  6. Muhammad Fayyaz Farid: Department of Applied Chemistry, Government College University, Faisalabad, Pakistan.
  7. Ali Bahadur: Department of Chemistry, Nanomaterials Research Center, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
  8. Shahid Iqbal: Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China. ORCID
  9. Sajid Mahmood: Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
  10. Abd-ElAziem Farouk: Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.
  11. Salman Aloufi: Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.

Abstract

Due to their widespread usage in recent years, synthetic dyes may be difficult to remove and pose a health concern. Bioadsorbents proved a low-cost and sustainable method for dye removal. In this study, straight yellow 26 is extracted from textile effluent using sugarcane bagasse. Sugarcane bagasse was treated with propionic acid to enhance the adsorption capability and 0.25���mm particle size was used for further studies which was confirmed by BET analysis. Standard solutions of direct yellow 26 dye were prepared from 10 to 100���ppm concentrations and absorbance was recorded with the help of a UV visible spectrophotometer. After optimizing different parameters (concentration of dye and bioadsorbent dose, pH, time, and particle size), the studies explored that the maximum dye removal percentage was 89% obtained at pH���3, contact time 120���min, particle size 0.25���mm, high adsorbent, and low concentration of dye solution. The kinetic studies were also employed to comprehend the adsorption isotherm and Freundlich isotherm that revealed the pseudo-first-order adsorption process.

Keywords

References

  1. Abubshait, S. A., S. Iqbal, H. A. Abubshait, et al. 2021. ���Effective Heterointerface Combination of 1D/2D Co���NiS/Sg���C3N4 Heterojunction for Boosting Spatial Charge Separation With Enhanced Photocatalytic Degradation of Organic Pollutants and Disinfection of Pathogens.��� Colloids and Surfaces A: Physicochemical and Engineering Aspects 628: 127390.
  2. Ali, I., M. Asim, and T. A. Khan. 2012. ���Low Cost Adsorbents for the Removal of Organic Pollutants From Wastewater.��� Journal of Environmental Management 113, no. 9: 170���183.
  3. Anbia, M., and S. Salehi. 2012. ���Removal of Acid Dyes From Aqueous Media by Adsorption Onto Amino���Functionalized Nanoporous Silica SBA���3.��� Dyes and Pigments 94, no. 1: 1���9.
  4. Anjum, M. N., K. M. Zia, L. Zhu, M. N. Ahmad, M. Zuber, and H. Tang. 2014. ���Adsorption of Methyl Orange Using Self���Assembled Porous Microspheres of Poly(o���Chloroaniline).��� Korean Journal of Chemical Engineering 31: 2192���2197.
  5. Ansari, S. A., F. Khan, and A. Ahmad. 2016. ���Cauliflower Leave, an Agricultural Waste Biomass Adsorbent, and Its Application for the Removal of MB Dye From Aqueous Solution: Equilibrium, Kinetics, and Thermodynamic Studies.��� International Journal of Analytical Chemistry 2016: 1���10.
  6. Anwer, S., G. Bharath, S. Iqbal, et al. 2018. ���Synthesis of Edge���Site Selectively Deposited au Nanocrystals on TiO2 Nanosheets: An Efficient Heterogeneous Catalyst With Enhanced Visible���Light Photoactivity.��� Electrochimica Acta 283: 1095���1104.
  7. Bahadur, A., S. Iqbal, H. O. Alsaab, N. S. Awwad, and H. A. J. R. A. Ibrahium. 2021. ���Designing a Novel Visible���Light���Driven Heterostructure Ni���ZnO/SgC3N4 Photocatalyst for Coloured Pollutant Degradation.��� RNC Advances 11: 36518���36527.
  8. Bahadur, A., A. Saeed, S. Iqbal, et al. 2017. ���Biocompatible Waterborne Polyurethane���Urea Elastomer as Intelligent Anticancer Drug Release Matrix: A Sustained Drug Release Study.��� Reactive and Functional Polymers 119: 57���63.
  9. Bajaber, M. A., M. N. Anjum, M. Ibrahim, T. Farooq, M. N. Ahmad, and Z. U. Abideen. 2022. ���Synthesis and Characterization of Hydroxyethyl Cellulose Grafted With Copolymer of Polyaniline and Polypyrrole Biocomposite for Adsorption of Dyes.��� Molecules 27: 8238.
  10. Barrow, M. J., R. M. Christie, and J. E. Monteith. 2002. ���The Crystal and Molecular Structures of Three Diarylide Yellow Pigments, CI Pigments Yellow 13, 14 and 63.��� Dyes and Pigments 5, no. 2���3: 79���89.
  11. Chakraborty, S., S. Chowdhury, and P. D. Saha. 2012. ���Adsorption of Crystal Violet From Aqueous Solution Onto Sugarcane Bagasse: Central Composite Design for Optimization of Process Variables.��� Journal of Water Reuse and Desalination 2, no. 1: 55���65.
  12. Chen, S., J. Zhang, C. Zhang, Q. Yue, Y. Li, and C. Li. 2010. ���Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived From Phragmitesaustralis.��� Desalination 252, no. 1���3: 149���156.
  13. Crini, G., P. M. Badot, N. M. Crini, and G. Torri. 2007. Wastewater Treatment Processes: A Recent Review of the Available Methods, 16���62. Besan��on, France: Press Universitaires de Franche���Comte (PUFC).
  14. Gomez, M., V. Arancibia, C. Rojas, and E. Nagles. 2012. ���Adsorptive Stripping Voltammetric Determination of Tartrazine and Sunset Yellow in Gelatins and Soft Drink Powder in the Presence of Cetylpyridinium Bromide.��� International Journal of Electrochemical Science 7, no. 8: 7493���7502.
  15. Gupta, V. K. 2009. ���Application of Low���Cost Adsorbents for Dye Removal���A Review.��� Journal of Environmental Management 90, no. 8: 2313���2342.
  16. Gusm��o, K. A. G., L. V. A. Gurgel, T. M. S. Melo, and L. F. Gil. 2012. ���Application of Succinylated Sugarcane Bagasse as Adsorbent to Remove Methylene Blue and Gentian Violet From Aqueous Solutions���Kinetic and Equilibrium Studies.��� Dyes and Pigments 92, no. 3: 967���974.
  17. Hussain, W., H. Malik, R. A. Hussain, et al. 2019. ���Synthesis of MnS From Single���and Multi���Source Precursors for Photocatalytic and Battery Applications.��� Journal of Electronic Materials 48: 2278���2288.
  18. Ibrahim, M. B., A. M. Ibrahim, M. A. Haruna, and M. S. Yaro. 2013. ���Removal of Congo Red Dye From Aqueous Solution Using Sugarcane Bagasse and Bambara Groundnut Shell.��� Chemistry Search Journal 4, no. 1: 22���28.
  19. Kamran, U., H. N. Bhatti, S. Noreen, M. A. Tahir, and S. Park. 2022. ���Chemically Modified Sugarcane Bagasse���Based Biocomposites for Efficient Removal of Acid Red 1 Dye: Kinetics, Isotherms, Thermodynamics, and Desorption Studies.��� Chemosphere 291, no. 8: 132796���132800.
  20. Kanawade, S. M., and R. W. Gaikwad. 2011. ���Removal of Dyes From Dye Effluent by Using Sugarcane Bagasse Ash as an Adsorbent.��� International Journal of Chemical Engineering and Applications 2, no. 3: 203���206.
  21. Kaushik, J., V. Kumar, K. M. Tripathi, and S. K. Sonkar. 2022. ���Sunlight���Promoted Photodegradation of Congo Red by Cadmium���Sulfide Decorated Graphene Aerogel.��� Chemosphere 287, no. 4: 132225���132230.
  22. Kharat, D. S. 2015. ���Preparing Agricultural Residue Based Adsorbents for Removal of Dyes From Effluents���A Review.��� Brazilian Journal of Chemical Engineering 32, no. 1: 1���12.
  23. Liu, W., J. Li, J. Zheng, et al. 2020. ���Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue.��� Environmental Science & Technology 54, no. 19: 11971���11979.
  24. Liu, W., J. Zheng, X. Ou, et al. 2018. ���Effective Extraction of Cr(VI) From Hazardous Gypsum Sludge via Controlling the Phase Transformation and Chromium Species.��� Environmental Science & Technology 52, no. 22: 13336���13342.
  25. Malik, P. K. 2003. ���Use of Activated Carbons Prepared From Sawdust and Rice���Husk for Adsorption of Acid Dyes: A Case Study of Acid Yellow 36.��� Dyes and Pigments 56, no. 3: 239���249.
  26. Markandeya, S., P. Shukla, and D. Mohan. 2017. ���Toxicity of Disperse Dyes and Its Removal From Wastewater Using Various Adsorbents: A Review.��� Research Journal of Environmental Toxicology 11: 72���89.
  27. Mittal, A., A. Malviya, D. Kaur, J. Mittal, and L. Kurup. 2007. ���Studies on the Adsorption Kinetics and Isotherms for the Removal and Recovery of Methyl Orange From Wastewaters Using Waste Materials.��� Journal of Hazardous Materials 148, no. 2: 229���240.
  28. Muthuraman, G., and M. Ibrahim. 2013. ���Use of Bulk Liquid Membrane for the Removal of Cibacron Red FN���R From Aqueous Solution Using TBAB as a Carrier.��� Journal of Industrial and Engineering Chemistry 19, no. 2: 444���449.
  29. Nadeem, S., S. Iqbal, M. Javed, et al. 2021. ���Kinetic and Isothermal Studies on the Adsorptive Removal of Direct Yellow 12 Dye From Wastewater Using Propionic Acid Treated Bagasse.��� ChemistrySelect 6: 12146���12152.
  30. Nasrullah, A., H. Khan, A. S. Khan, et al. 2015. ���Potential Biosorbent Derived From Calligonumpolygonoides for Removal of Methylene Blue Dye From Aqueous Solution.��� Scientific World Journal 53, no. 3: 250���264.
  31. Ong, S. T., E. C. Khoo, S. L. Hii, and S. T. Ha. 2010. ���Utilization of Sugarcane Bagasse for Removal of Basic Dyes From Aqueous Environment in Single and Binary Systems.��� Desalination and Water Treatment 20, no. 1���3: 86���95.
  32. ��zacar, M., and I. A. ��engil. 2003. ���Adsorption of Reactive Dyes on Calcinedalunite From Aqueous Solutions.��� Journal of Hazardous Materials 98, no. 1���3: 211���224.
  33. Said, A. A., M. M. M. Abd El���Wahab, S. A. Soliman, and A. A. M. Aly. 2010. ���Potential Application of Propionic Acid Modified Sugarcane Bagasse for Removal of Basic and Acid Dyes From Industrial Wastewater.��� In 2010 International Conference on Environmental Engineering and Applications, vol. 4, 154���156. Singapore: IEEE.
  34. Said, A. E. A. A., A. A. Aly, M. M. Abd El���Wahab, et al. 2013. ���Application of Modified Bagasse as a Biosorbent for Reactive Dyes Removal From Industrial Wastewater.��� Journal of Water Resource and Protection 5, no. 7: 10���18.
  35. Sharma, P., and H. Kaur. 2011. ���Sugarcane Bagasse for the Removal of Erythrosin B and Methylene Blue From Aqueous Waste.��� Applied Water Science 1, no. 3���4: 135���145.
  36. Shulin, Z., L. Junxiong, F. Minghui, and Q. Xiaoqian. 2008. ���Adsorption of Anionic Dye by Magnesium Hydroxide���Modified Diatomite.��� Rare Metal Materials and Engineering 37, no. 5: 644���647.
  37. Tahir, H., M. Sultan, N. Akhtar, U. Hameed, and T. Abid. 2016. ���Application of Natural and Modified Sugar Cane Bagasse for the Removal of Dye From Aqueous Solution.��� Journal of Saudi Chemical Society 20: S115���S121.
  38. Wang, Y., J. Wu, W. Zhang, et al. 2024. ���Efficient Removal of Dibutyl Phthalate From Aqueous Solutions: Recent Advances in Adsorption and Oxidation Approaches.��� Reaction Chemistry & Engineering 9, no. 6: 1276���1291.
  39. Zheng, Q., W. Zhang, L. Wang, et al. 2024. ���Functional Dyeing of Cellulose Macromolecule/Synthetic Fibers Two���Component Fabrics With Sustainable Microbial Prodigiosins.��� International Journal of Biological Macromolecules 278: 134964.

Grants

  1. TU-DSPP-2024-65/Taif University

Word Cloud

Created with Highcharts 10.0.0dyeadsorptionyellow26particlesizestudiesremovaltextilebagasse025���mmdirectconcentrationbioadsorbenttimeisothermDuewidespreadusagerecentyearssyntheticdyesmaydifficultremoveposehealthconcernBioadsorbentsprovedlow-costsustainablemethodstudystraightextractedeffluentusingsugarcaneSugarcanetreatedpropionicacidenhancecapabilityusedconfirmedBETanalysisStandardsolutionsprepared10100���ppmconcentrationsabsorbancerecordedhelpUVvisiblespectrophotometeroptimizingdifferentparametersdosepHexploredmaximumpercentage89%obtainedpH���3contact120���minhighadsorbentlowsolutionkineticalsoemployedcomprehendFreundlichrevealedpseudo-first-orderprocessKineticIsothermalAnalysisAdsorptiveEliminationDirectYellowDyeUtilizingActivatedBioadsorbentTextileEffluentoptimizationwastewater

Similar Articles

Cited By