Multi-color fluorescence live-cell imaging in Dictyostelium discoideum.

Hidenori Hashimura, Satoshi Kuwana, Hibiki Nakagawa, Kenichi Abe, Tomoko Adachi, Toyoko Sugita, Shoko Fujishiro, Gen Honda, Satoshi Sawai
Author Information
  1. Hidenori Hashimura: Graduate School of Arts and Sciences, The University of Tokyo.
  2. Satoshi Kuwana: Graduate School of Arts and Sciences, The University of Tokyo.
  3. Hibiki Nakagawa: Graduate School of Arts and Sciences, The University of Tokyo.
  4. Kenichi Abe: Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo.
  5. Tomoko Adachi: Graduate School of Arts and Sciences, The University of Tokyo.
  6. Toyoko Sugita: Graduate School of Arts and Sciences, The University of Tokyo.
  7. Shoko Fujishiro: Graduate School of Arts and Sciences, The University of Tokyo.
  8. Gen Honda: Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo.
  9. Satoshi Sawai: Graduate School of Arts and Sciences, The University of Tokyo.

Abstract

The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.

Keywords

References

  1. Cell. 2021 Jan 7;184(1):272-288.e11 [PMID: 33378642]
  2. J Vis Exp. 2019 Jan 25;(143): [PMID: 30735174]
  3. PLoS One. 2018 May 30;13(5):e0196809 [PMID: 29847546]
  4. EMBO Rep. 2004 Jun;5(6):602-6 [PMID: 15143344]
  5. Plant Physiol. 2010 Feb;152(2):787-96 [PMID: 19965966]
  6. PLoS One. 2013 Jul 02;8(7):e67902 [PMID: 23844123]
  7. Elife. 2016 Dec 13;5: [PMID: 27960076]
  8. Nat Methods. 2008 Jun;5(6):545-51 [PMID: 18454154]
  9. PLoS One. 2014 Jun 24;9(6):e100252 [PMID: 24959857]
  10. Nat Methods. 2022 Dec;19(12):1612-1621 [PMID: 36344833]
  11. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2391-6 [PMID: 10681463]
  12. J Cell Sci. 2002 May 15;115(Pt 10):2241-51 [PMID: 11973364]
  13. Mol Cell Biol. 1984 Dec;4(12):2890-8 [PMID: 6098825]
  14. Nature. 2005 May 5;435(7038):43-57 [PMID: 15875012]
  15. Genome Res. 2021 Aug;31(8):1498-1511 [PMID: 34183452]
  16. Biophys J. 2005 Feb;88(2):L14-6 [PMID: 15613634]
  17. Science. 1986 Oct 10;234(4773):179-86 [PMID: 3018930]
  18. Nat Methods. 2022 Jun;19(6):740-750 [PMID: 35606446]
  19. Methods Mol Biol. 2017;1663:179-188 [PMID: 28924668]
  20. Nat Biotechnol. 2006 Jan;24(1):79-88 [PMID: 16369541]
  21. Nat Methods. 2023 Dec;20(12):1957-1970 [PMID: 37957429]
  22. J Cell Sci. 2021 Dec 15;134(24): [PMID: 34806750]
  23. Fungal Genet Biol. 2023 Jan;164:103763 [PMID: 36481248]
  24. J Cell Sci. 1999 Nov;112 ( Pt 22):3995-4005 [PMID: 10547360]
  25. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4149-E4157 [PMID: 28495969]
  26. Elife. 2020 Apr 07;9: [PMID: 32255425]
  27. Sci Rep. 2018 Jan 30;8(1):1866 [PMID: 29382930]
  28. Proc Natl Acad Sci U S A. 2021 Dec 14;118(50): [PMID: 34876521]
  29. PLoS One. 2008 Jul 09;3(7):e2654 [PMID: 18612387]
  30. J Biol Chem. 2004 Mar 12;279(11):10013-9 [PMID: 14699152]
  31. Biophys J. 2013 Mar 5;104(5):1191-202 [PMID: 23473502]
  32. EMBO J. 1999 Apr 15;18(8):2092-105 [PMID: 10205164]
  33. Chem Soc Rev. 2023 Feb 20;52(4):1189-1214 [PMID: 36722390]
  34. PLoS One. 2011;6(12):e28674 [PMID: 22174863]
  35. Plasmid. 2009 Mar;61(2):119-25 [PMID: 19046986]
  36. ACS Chem Biol. 2008 Jun 20;3(6):373-82 [PMID: 18533659]
  37. Sci Signal. 2018 Sep 18;11(548): [PMID: 30228224]
  38. Nat Commun. 2024 Jun 25;15(1):5279 [PMID: 38918382]
  39. Annu Rev Cell Dev Biol. 1999;15:469-517 [PMID: 10611970]
  40. Cold Spring Harb Protoc. 2012 Mar 01;2012(3):267-78 [PMID: 22383647]
  41. J Cell Sci. 2008 Apr 15;121(Pt 8):1204-12 [PMID: 18349072]
  42. Dev Biol. 2019 Aug 15;452(2):114-126 [PMID: 31051160]
  43. Dev Genes Evol. 1999 Jan;209(1):63-8 [PMID: 9914420]
  44. Plasmid. 2009 Mar;61(2):110-8 [PMID: 19063918]
  45. Nat Methods. 2014 May;11(5):572-8 [PMID: 24633408]
  46. Cytoskeleton (Hoboken). 2014 Mar;71(3):157-69 [PMID: 24347465]
  47. Biol Cell. 2000 Oct;92(7):495-511 [PMID: 11229601]
  48. Appl Microbiol Biotechnol. 2024 Feb 14;108(1):208 [PMID: 38353763]
  49. Curr Biol. 2000 Jun 15;10(12):708-17 [PMID: 10873800]
  50. Nucleic Acids Res. 2020 May 7;48(8):4139-4146 [PMID: 32232356]
  51. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4291-4296 [PMID: 30782791]
  52. Nature. 2013 Jul 18;499(7458):295-300 [PMID: 23868258]
  53. Dev Biol. 2007 Dec 1;312(1):29-43 [PMID: 17950724]
  54. Nucleus. 2022 Dec;13(1):144-154 [PMID: 35298348]
  55. Sci Rep. 2015 Dec 18;5:18348 [PMID: 26679720]
  56. Chem Biol. 2008 Oct 20;15(10):1116-24 [PMID: 18940671]
  57. Nat Biotechnol. 2002 Jan;20(1):87-90 [PMID: 11753368]
  58. Commun Biol. 2019 Jan 24;2:34 [PMID: 30701199]
  59. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6424-9 [PMID: 23576747]
  60. BMC Biotechnol. 2016 Apr 14;16:37 [PMID: 27075750]
  61. Nat Methods. 2013 Aug;10(8):751-4 [PMID: 23770755]
  62. Nat Biotechnol. 2011 Jul 17;29(8):757-61 [PMID: 21765402]
  63. FEBS Lett. 2004 Nov 5;577(1-2):227-32 [PMID: 15527790]
  64. Trends Biochem Sci. 2017 Feb;42(2):111-129 [PMID: 27814948]
  65. Science. 1994 Feb 11;263(5148):802-5 [PMID: 8303295]
  66. J Biol Chem. 2007 Apr 20;282(16):12298-309 [PMID: 17322301]
  67. Curr Biol. 2010 Mar 9;20(5):397-406 [PMID: 20188556]
  68. Nat Methods. 2017 Jan;14(1):53-56 [PMID: 27869816]
  69. Nature. 2020 Apr;580(7801):119-123 [PMID: 31915376]
  70. Nat Biotechnol. 2016 Jul;34(7):760-7 [PMID: 27240196]
  71. Nat Biotechnol. 2004 Dec;22(12):1567-72 [PMID: 15558047]
  72. Biochem Biophys Rep. 2020 Mar 25;22:100751 [PMID: 32258439]
  73. Curr Opin Chem Biol. 2015 Aug;27:52-63 [PMID: 26115447]
  74. Gene. 1995 Nov 7;165(1):127-30 [PMID: 7489901]
  75. Nat Commun. 2012 Mar 20;3:751 [PMID: 22434194]
  76. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12399-404 [PMID: 20562345]
  77. J Cell Sci. 2020 Jan 8;133(1): [PMID: 31801797]
  78. Nat Commun. 2019 Jan 17;10(1):279 [PMID: 30655515]
  79. Bioinformatics. 2017 Aug 01;33(15):2424-2426 [PMID: 28369169]
  80. Curr Biol. 2014 Jan 20;24(2):205-211 [PMID: 24388853]
  81. Nat Commun. 2020 Jan 13;11(1):239 [PMID: 31932632]
  82. Cell. 1989 Dec 22;59(6):1157-63 [PMID: 2513127]
  83. Nucleic Acids Res. 1989 Dec 11;17(23):9679-92 [PMID: 2602140]
  84. Nat Methods. 2013 May;10(5):407-9 [PMID: 23524392]

MeSH Term

Dictyostelium
Luminescent Proteins
Red Fluorescent Protein
Microscopy, Fluorescence

Chemicals

Luminescent Proteins
Red Fluorescent Protein

Word Cloud

Created with Highcharts 10.0.0discoideumimagingDictyosteliumDfluorescencefluorescentFPcytoskeletonAmoebozoacelluniquelive-cellusegene4-proteincolororganellesmallGTPasecellularslimemoldmemberextensivelystudieddevelopmentalbiologygeneticallytractablewealthdataaccumulatedhalfcenturyresearchFluorescencegreatlyfacilitatedstudiesfundamentaltopicsincludingcytokinesisphagocytosismigrationAdditionallylifecycleplacesforefrontunderstandingaggregativemulticellularityrecurringevolutionarytraitfoundacrossOpisthokontacladesmultipleproteinslabelsseparablespectralpropertiescriticaltrackingcellsaggregatesidentifyingco-occurringbiomoleculareventsfactorsunderliedynamicsmembranelipidssecondmessengersexpressionHowevernumberfrequentlyusedspecieslimitedtwothreestudyexplorednew-generationpractical5-colorshowedyellowAchillesredmScarlet-IyieldhighsignalsallowsensitivedetectionrapidinductionpaletteexpandedincludebluemTagBFP2mTurquosie2largeStoke-shiftLSSmGFPnear-infraredmiRFP670nano3FPsadditionHaloTagligandSaraFluor650TThusdemonstratedfeasibilitydeploying5-usingconventionalconfocalmicroscopyKeywords:Multi-color

Similar Articles

Cited By (1)