A novel single-tube LAMP-CRISPR/Cas12b method for rapid and visual detection of zoonotic Toxoplasma gondii in the environment.

Yao Liang, Shi-Chen Xie, Yi-Han Lv, Yuan-Hui He, Xiao-Nan Zheng, Wei Cong, Hany M Elsheikha, Xing-Quan Zhu
Author Information
  1. Yao Liang: Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
  2. Shi-Chen Xie: Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
  3. Yi-Han Lv: Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
  4. Yuan-Hui He: Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
  5. Xiao-Nan Zheng: Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
  6. Wei Cong: Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
  7. Hany M Elsheikha: Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK. hany.elsheikha@nottingham.ac.uk.
  8. Xing-Quan Zhu: Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China. xingquanzhu1@hotmail.com. ORCID

Abstract

BACKGROUND: Toxoplasma gondii oocysts, excreted in cat feces, pose a significant health risk to humans through contaminated soil and water. Rapid and accurate detection of T. gondii in environmental samples is essential for public health protection.
METHODS: We developed a novel, single-tube detection method that integrates loop-mediated isothermal amplification (LAMP), the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12b system, and lateral flow immunoassay strips for rapid, visual identification of T. gondii. This method targets the T. gondii B1 gene, initially amplifies it with LAMP, directed by a single-guide RNA (sgRNA). It then recognizes the amplified target gene and activates trans-cleavage, cutting nearby single-stranded DNA (ssDNA) reporters. Fluorescence detection was performed using a 6-Carboxyfluorescein (FAM)-12N-Black Hole Quencher-1 (BHQ1) reporter, while Fluorescein Isothiocyanate (FITC)-12N-Biotin enabled visual detection on lateral flow strips. The method was tested for its ability to detect various T. gondii genotypes and related parasites, assessing its specificity and broad-spectrum applicability. It was further applied to real-world environmental samples to evaluate its practicality.
RESULTS: The LAMP-CRISPR/Cas12b method exhibited high specificity and broad-spectrum detection capability, successfully identifying nine T. gondii genotypes and distinguishing them from 11 other parasitic species. Sensitivity testing at both molecular (plasmid) and practical (oocyst) levels showed detection limits of 10  copies/μL and 0.1 oocyst, respectively. When applied to 112 environmental samples (soil, water, and cat feces), the method demonstrated 100% sensitivity, accurately reflecting known infection rates.
CONCLUSIONS: This LAMP-CRISPR/Cas12b single-tube method offers a robust, innovative approach for monitoring zoonotic T. gondii in environmental samples, with significant implications for public health surveillance.

Keywords

References

  1. Nucleic Acids Res. 2000 Jun 15;28(12):E63 [PMID: 10871386]
  2. Vet Parasitol. 2010 Jul 15;171(1-2):53-7 [PMID: 20347524]
  3. Parasitol Res. 2019 Feb;118(2):631-640 [PMID: 30607608]
  4. Diagnostics (Basel). 2023 Apr 16;13(8): [PMID: 37189533]
  5. Biotechnol Rep (Amst). 2020 Jun 06;27:e00485 [PMID: 32577410]
  6. Nat Biomed Eng. 2021 Jul;5(7):643-656 [PMID: 34272525]
  7. Vet Parasitol. 2017 Aug 30;243:199-203 [PMID: 28807294]
  8. Trans R Soc Trop Med Hyg. 2021 May 8;115(5):471-481 [PMID: 33205208]
  9. Front Microbiol. 2022 Sep 15;13:958693 [PMID: 36187950]
  10. Parasite. 2022;29:21 [PMID: 35420541]
  11. Appl Environ Microbiol. 2010 Aug;76(15):5140-7 [PMID: 20543052]
  12. Water Res. 2015 Dec 15;87:175-81 [PMID: 26408950]
  13. Zoonoses Public Health. 2020 Feb;67(1):70-78 [PMID: 31677251]
  14. J Parasitol. 2001 Feb;87(1):215-9 [PMID: 11227895]
  15. EBioMedicine. 2023 Aug;94:104730 [PMID: 37487416]
  16. Curr Opin Biotechnol. 2019 Oct;59:93-102 [PMID: 30978482]
  17. ACS Synth Biol. 2019 Oct 18;8(10):2228-2237 [PMID: 31532637]
  18. Water Res. 2021 Sep 15;203:117553 [PMID: 34425437]
  19. Front Mol Biosci. 2020 Dec 23;7:582499 [PMID: 33425987]
  20. Bioengineered. 2018;9(1):214-221 [PMID: 29968520]
  21. Int J Mol Sci. 2018 Apr 05;19(4): [PMID: 29621180]
  22. Sci Total Environ. 2021 Feb 10;755(Pt 2):143232 [PMID: 33160663]
  23. J Parasitol. 1995 Jun;81(3):410-5 [PMID: 7776126]
  24. Biotechnol J. 2018 Sep;13(9):e1700586 [PMID: 29917318]
  25. ACS Synth Biol. 2022 May 20;11(5):1772-1781 [PMID: 35471824]
  26. Emerg Microbes Infect. 2020 Dec;9(1):1682-1691 [PMID: 32643563]
  27. J Appl Microbiol. 2018 Mar;124(3):626-643 [PMID: 29165905]
  28. Int J Mol Sci. 2021 Nov 22;22(22): [PMID: 34830457]
  29. Microorganisms. 2021 Nov 13;9(11): [PMID: 34835471]
  30. Clin Microbiol Rev. 2020 Nov 25;34(1): [PMID: 33239310]
  31. Vet Parasitol. 2006 Oct 10;141(1-2):9-17 [PMID: 16815636]
  32. Parasit Vectors. 2020 Feb 17;13(1):82 [PMID: 32066495]
  33. Microbiol Spectr. 2023 Feb 22;:e0403522 [PMID: 36821485]
  34. Sci Total Environ. 2024 Dec 10;955:176983 [PMID: 39419207]
  35. Parasit Vectors. 2021 Apr 20;14(1):208 [PMID: 33879230]
  36. Ecotoxicol Environ Saf. 2020 Feb;189:109999 [PMID: 31812824]
  37. Biosens Bioelectron. 2021 Jan 15;172:112766 [PMID: 33126177]
  38. Parasit Vectors. 2016 Mar 10;9:137 [PMID: 26965989]
  39. Food Waterborne Parasitol. 2019 Apr 01;15:e00049 [PMID: 32095620]
  40. Narra J. 2023 Dec;3(3):e301 [PMID: 38455618]
  41. J Adv Res. 2020 Oct 21;29:207-221 [PMID: 33842017]
  42. Indian J Clin Biochem. 2021 Oct;36(4):459-467 [PMID: 33879980]
  43. J Water Health. 2018 Aug;16(4):657-660 [PMID: 30067246]
  44. Int J Parasitol. 2021 Feb;51(2-3):95-121 [PMID: 33347832]
  45. Rev Bras Parasitol Vet. 2018 Jul-Sep;27(3):327-337 [PMID: 30183998]
  46. Microorganisms. 2022 Feb 27;10(3): [PMID: 35336093]
  47. J Infect. 2021 Jul;83(1):54-60 [PMID: 33951419]
  48. J Clin Microbiol. 2010 Oct;48(10):3698-702 [PMID: 20660217]
  49. J Clin Microbiol. 2001 Jan;39(1):398-400 [PMID: 11136812]
  50. Science. 2017 Apr 28;356(6336):438-442 [PMID: 28408723]
  51. Environ Sci Technol. 2022 Apr 5;56(7):4101-4110 [PMID: 35263090]
  52. Emerg Infect Dis. 2019 Dec;25(12):2177-2182 [PMID: 31742524]
  53. Trop Biomed. 2019 Dec 1;36(4):898-925 [PMID: 33597463]
  54. J Appl Microbiol. 2014 Oct;117(4):1181-90 [PMID: 24947913]

Grants

  1. 2021YFC2300800/National Key Research and Development Program of China
  2. 2021YFC2300802/National Key Research and Development Program of China
  3. 2021YFC2300804/National Key Research and Development Program of China
  4. LXXMsxnd202101/Shanxi Provincial Agricultural and Rural Research Program
  5. RFSXIHLT202101/the Research Fund of Shanxi Province for Introduced High-level Leading Talents
  6. 2021XG001/the Special Research Fund of Shanxi Agricultural University for High-level Talents

MeSH Term

Toxoplasma
Nucleic Acid Amplification Techniques
CRISPR-Cas Systems
Animals
Molecular Diagnostic Techniques
Humans
Sensitivity and Specificity
Cats
Zoonoses
Feces
Toxoplasmosis

Word Cloud

Created with Highcharts 10.0.0gondiidetectionmethodTenvironmentalsamplesToxoplasmahealthsingle-tubeflowvisualLAMP-CRISPR/Cas12bcatfecessignificantsoilwaterpublicnovelisothermalamplificationLAMPlateralimmunoassaystripsrapidgenegenotypesparasitesspecificitybroad-spectrumappliedoocystzoonoticBACKGROUND:oocystsexcretedposeriskhumanscontaminatedRapidaccurateessentialprotectionMETHODS:developedintegratesloop-mediatedclusteredregularlyinterspacedshortpalindromicrepeatsCRISPR/Cas12bsystemidentificationtargetsB1initiallyamplifiesdirectedsingle-guideRNAsgRNArecognizesamplifiedtargetactivatestrans-cleavagecuttingnearbysingle-strandedDNAssDNAreportersFluorescenceperformedusing6-CarboxyfluoresceinFAM-12N-BlackHoleQuencher-1BHQ1reporterFluoresceinIsothiocyanateFITC-12N-Biotinenabledtestedabilitydetectvariousrelatedassessingapplicabilityreal-worldevaluatepracticalityRESULTS:exhibitedhighcapabilitysuccessfullyidentifyingninedistinguishing11parasiticspeciesSensitivitytestingmolecularplasmidpracticallevelsshowedlimits10 copies/μL01respectively112demonstrated100%sensitivityaccuratelyreflectingknowninfectionratesCONCLUSIONS:offersrobustinnovativeapproachmonitoringimplicationssurveillanceenvironmentCRISPR/Cas12bEnvironmentalLateralLoop-mediatedMoleculardiagnosticsZoonotic

Similar Articles

Cited By