Compounds Containing 2,3-Bis(phenylamino) Quinoxaline Exhibit Activity Against Methicillin-Resistant Staphylococcus aureus, Enterococcus faecalis, and Their Biofilms.

Gilda Padalino, Katrina Duggan, Luis A J Mur, Jean-Yves Maillard, Andrea Brancale, Karl F Hoffmann
Author Information
  1. Gilda Padalino: Swansea University Medical School, Swansea, UK. ORCID
  2. Katrina Duggan: School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
  3. Luis A J Mur: Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, UK.
  4. Jean-Yves Maillard: School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK. ORCID
  5. Andrea Brancale: Department of Organic Chemistry, UCT Prague, Prague, Czech Republic.
  6. Karl F Hoffmann: Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, UK.

Abstract

Antimicrobial resistance remains a global issue, hindering the control of bacterial infections. This study examined the antimicrobial properties of 2,3-N,N-diphenyl quinoxaline derivatives against Gram-positive, Gram-negative, and Mycobacterium species. Two quinoxaline derivatives (compounds 25 and 31) exhibited significant activity against most strains of Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis tested, with MIC values ranging from 0.25 to 1 mg/L. These compounds also showed effective antibacterial activity against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecium/E. faecalis (VRE) strains. They demonstrated comparable or superior activity to four current antibiotics (vancomycin, teicoplanin, daptomycin, and linezolid) against a wide range of clinically relevant isolates. Additionally, they were more effective in preventing S. aureus and E. faecalis biofilm formation compared to several other antibiotics. In summary, these two quinoxaline derivatives have potential as new antibacterial agents.

Keywords

References

  1. Sci Rep. 2023 Oct 24;13(1):18136 [PMID: 37875605]
  2. Antimicrob Agents Chemother. 2018 Jan 25;62(2): [PMID: 29133557]
  3. Front Cell Infect Microbiol. 2023 Apr 06;13:1137947 [PMID: 37091673]
  4. Bacteriol Virusol Parazitol Epidemiol. 2010 Apr-Jun;55(2):77-82 [PMID: 21553472]
  5. Int J Antimicrob Agents. 2006 May;27(5):392-6 [PMID: 16621463]
  6. Nat Rev Microbiol. 2016 Apr;14(5):320-30 [PMID: 27080241]
  7. Biotechnol Rep (Amst). 2021 Feb 23;29:e00604 [PMID: 33732632]
  8. Front Pharmacol. 2022 Oct 20;13:961087 [PMID: 36339560]
  9. Eur J Med Chem. 2014 Oct 6;85:688-715 [PMID: 25128670]
  10. Front Microbiol. 2018 Sep 07;9:2153 [PMID: 30245684]
  11. J Hosp Infect. 2019 Apr;101(4):426-427 [PMID: 30826342]
  12. Molecules. 2013 Jan 24;18(2):1394-404 [PMID: 23348993]
  13. Drug Resist Updat. 2016 Sep;28:13-27 [PMID: 27620952]
  14. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  15. Nat Chem Biol. 2011 Dec 15;8(1):2-5 [PMID: 22173342]
  16. Clin Infect Dis. 2005 Jan 15;40(2):280-5 [PMID: 15655748]
  17. Molecules. 2021 Aug 05;26(16): [PMID: 34443334]
  18. PLoS One. 2014 Jan 17;9(1):e85706 [PMID: 24465654]
  19. Healthcare (Basel). 2023 Jul 05;11(13): [PMID: 37444780]
  20. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  21. Molecules. 2019 Nov 19;24(22): [PMID: 31752396]
  22. Viruses. 2019 Apr 20;11(4): [PMID: 31010053]
  23. Eur J Med Chem. 2015 Jun 5;97:664-72 [PMID: 25011559]
  24. PLoS Negl Trop Dis. 2014 Jan 09;8(1):e2610 [PMID: 24416463]
  25. Sci Rep. 2018 Mar 23;8(1):5084 [PMID: 29572459]
  26. Open Forum Infect Dis. 2022 Feb 14;9(4):ofac082 [PMID: 35265731]
  27. Nat Commun. 2023 May 27;14(1):3059 [PMID: 37244916]
  28. Nat Rev Microbiol. 2023 Sep;21(9):555-572 [PMID: 37258686]
  29. Front Cell Infect Microbiol. 2022 Jul 01;12:896978 [PMID: 35846761]
  30. Arch Pharm (Weinheim). 2022 Aug;355(8):e2100492 [PMID: 35532283]
  31. Clin Infect Dis. 2001 Oct 15;33(8):1387-92 [PMID: 11565080]
  32. Pharm Res. 2020 Jun 11;37(7):125 [PMID: 32529587]
  33. PLoS One. 2009 Jul 30;4(7):e6443 [PMID: 19649280]
  34. Eur J Med Chem. 2021 Dec 15;226:113823 [PMID: 34536671]
  35. Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):91-101 [PMID: 24328927]
  36. J Antimicrob Chemother. 2006 Dec;58(6):1107-17 [PMID: 17040922]
  37. EMBO Rep. 2023 Jan 9;24(1):e56184 [PMID: 36541849]
  38. Clin Infect Dis. 2004 Mar 15;38(6):864-70 [PMID: 14999632]
  39. J Microbiol Methods. 2018 Jan;144:177-185 [PMID: 29154899]
  40. J Clin Microbiol. 2006 Mar;44(3):1141-4 [PMID: 16517915]
  41. Antimicrob Resist Infect Control. 2018 Nov 14;7:133 [PMID: 30459945]
  42. Nat Rev Microbiol. 2024 Jan;22(1):4-17 [PMID: 37648789]
  43. Adv Appl Microbiol. 2011;77:1-40 [PMID: 22050820]
  44. Arch Pharm (Weinheim). 2018 May;351(5):e1700325 [PMID: 29611626]
  45. Int J Mol Sci. 2011;12(10):6432-44 [PMID: 22072897]

Grants

  1. /This work was supported by Aberystwyth University (Technology Transfer Grant Development Award) and the Life Sciences Wales Research Network (a Welsh Government Ser Cymru initiative).

MeSH Term

Quinoxalines
Biofilms
Enterococcus faecalis
Microbial Sensitivity Tests
Methicillin-Resistant Staphylococcus aureus
Anti-Bacterial Agents
Humans

Chemicals

Quinoxalines
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0aureusEnterococcusfaecalisquinoxalinederivativesactivityStaphylococcus2compounds25strainsfaeciumeffectiveantibacterialSMRSAEVREantibioticsbiofilmAntimicrobialresistanceremainsglobalissuehinderingcontrolbacterialinfectionsstudyexaminedantimicrobialproperties3-NN-diphenylGram-positiveGram-negativeMycobacteriumspeciesTwo31exhibitedsignificanttestedMICvaluesranging01 mg/Lalsoshowedmethicillin-resistantvancomycin-resistantfaecium/EdemonstratedcomparablesuperiorfourcurrentvancomycinteicoplanindaptomycinlinezolidwiderangeclinicallyrelevantisolatesAdditionallypreventingformationcomparedseveralsummarytwopotentialnewagentsCompoundsContaining3-BisphenylaminoQuinoxalineExhibitActivityMethicillin-ResistantBiofilms

Similar Articles

Cited By