A Situation-Specific Theory on the Use of Immersive Virtual Reality in Rehabilitation for Patients With Disabilities.

Valentina Micheluzzi, Ercole Vellone, Paolo Iovino
Author Information
  1. Valentina Micheluzzi: Author Affiliations: Clinical and Interventional Cardiology, University Hospital, Sassari, Italy (Dr Micheluzzi); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (Drs Micheluzzi and Vellone); Department of Nursing and Obstetrics, Wroclaw Medical University, Wrocław, Poland (Dr Vellone); and Health Sciences Department, University of Florence, Florence, Italy (Dr Iovino).

Abstract

A primary challenge impeding optimal health outcomes in patients with disabilities is the lack of rehabilitation adherence. Immersive virtual reality emerges as a promising intervention with the potential to significantly enhance this key health outcome. This paper presents a situation-specific theory that outlines the mechanisms through which immersive virtual reality can promote rehabilitation adherence. Outcomes of immersive virtual reality encompass psychological (ie, motivation, self-efficacy, mood state) as well as physical responses (ie, pain management, muscle strength). Mechanisms by which immersive virtual reality influences outcomes are explained by proximal and distal mediators (attention, sense of presence, enjoyment). Possible moderators of these mechanisms (ie, age, gender, social support, trust in technology, cognitive status) are also described.

References

  1. Wang H, Abbas KM, Abbasifard M, et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1160-1203. doi:10.1016/S0140-6736(20)30977-6. [DOI: 10.1016/S0140-6736(20)30977-6]
  2. Woolford SJ, Sohan O, Dennison EM, Cooper C, Patel HP. Approaches to the diagnosis and prevention of frailty. Aging Clin Exp Res. 2020;32(9):1629-1637. doi:10.1007/s40520-020-01559-3. [DOI: 10.1007/s40520-020-01559-3]
  3. Pelliccia A, Sharma S, Gati S, et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J. 2021;42(1):17-96. doi:10.1093/eurheartj/ehaa605. [DOI: 10.1093/eurheartj/ehaa605]
  4. Sanches EE, Aupers E, Sakran N, Navalta J, Kostka T, Pouwels S. Barriers and facilitators in rehabilitation in chronic diseases and after surgery: is it a matter of adherence? Cureus. 2021;13(12):e20173. doi:10.7759/cureus.20173. [DOI: 10.7759/cureus.20173]
  5. Lee Y, Won M. Mediating effects of rehabilitation motivation between social support and health-related quality of life among patients with stroke. Int J Environ Res Public Health. 2022;19(22):15274. doi:10.3390/ijerph192215274. [DOI: 10.3390/ijerph192215274]
  6. Rodríguez-Mansilla J, Bedmar-Vargas C, Garrido-Ardila EM, et al. Effects of virtual reality in the rehabilitation of Parkinson’s disease: a systematic review. J Clin Med. 2023;12(15):4896. doi:10.3390/jcm12154896. [DOI: 10.3390/jcm12154896]
  7. Alfieri FM, da Silva Dias C, de Oliveira NC, Battistella LR. Gamification in musculoskeletal rehabilitation. Curr Rev Musculoskelet Med. 2022;15(6):629-636. doi:10.1007/s12178-022-09797-w. [DOI: 10.1007/s12178-022-09797-w]
  8. Doumas I, Everard G, Dehem S, Lejeune T. Serious games for upper limb rehabilitation after stroke: a meta-analysis. J Neuroeng Rehabil. 2021;18(1):100. doi:10.1186/s12984-021-00889-1. [DOI: 10.1186/s12984-021-00889-1]
  9. Micheluzzi V, Casu G, Sanna GD, et al. Improving adherence to rehabilitation for heart failure patients through immersive virtual reality (VIRTUAL-HF): a protocol for a randomized controlled trial. Contemp Clin Trials. 2024;138:107463. doi:10.1016/J.CCT.2024.107463. [DOI: 10.1016/J.CCT.2024.107463]
  10. Micheluzzi V, Navarese EP, Merella P, et al. Clinical application of virtual reality in patients with cardiovascular disease: state of the art. Front Cardiovasc Med. 2024;11:1356361. doi:10.3389/fcvm.2024.1356361. [DOI: 10.3389/fcvm.2024.1356361]
  11. Burrai F, Othman S, Brioni E, et al. Virtual reality in dialysis: a new perspective on care. J Ren Care. 2018;44(4):195-196. doi:10.1111/jorc.12264. [DOI: 10.1111/jorc.12264]
  12. Micheluzzi V, Burrai F, Casula M, et al. Effectiveness of virtual reality on pain and anxiety in patients undergoing cardiac procedures: a systematic review and meta-analysis of randomized controlled trials. Curr Probl Cardiol. 2024;49(5):102532. doi:10.1016/j.cpcardiol.2024.102532. [DOI: 10.1016/j.cpcardiol.2024.102532]
  13. Burrai F, Forton Magavern E, Micheluzzi V, Magnaghi C, Apuzzo L, Brioni E. Effectiveness of music to improve anxiety in hemodialysis patients: a systematic review and meta-analysis. Holist Nurs Pract. 2020;34(6):324-333. doi:10.1097/HNP.0000000000000411. [DOI: 10.1097/HNP.0000000000000411]
  14. Weech S, Kenny S, Barnett-Cowan M. Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol. 2019;10:158. doi:10.3389/fpsyg.2019.00158. [DOI: 10.3389/fpsyg.2019.00158]
  15. Im EO, Meleis AI. Situation-specific theories: philosophical roots, properties, and approach. ANS Adv Nurs Sci. 1999;22(2):11-24. doi:10.1097/00012272-199912000-00003. [DOI: 10.1097/00012272-199912000-00003]
  16. Hayden S. The Neuman Systems Model (5th ed.) by B. Neuman and J. Fawcett (Upper Saddle River, NJ: Pearson, 2011). Nurs Sci Q. 2012;25(4):378-380. doi:10.1177/0894318412457067. [DOI: 10.1177/0894318412457067]
  17. Choi W, Dyens O, Chan T, et al. Engagement and learning in simulation: recommendations of the simnovate engaged learning domain group. BMJ Simul Technol Enhanc Learn. 2017;3(Suppl 1):S23-S32. doi:10.1136/bmjstel-2016-000177. [DOI: 10.1136/bmjstel-2016-000177]
  18. Jones MV, Gidlow CJ, Hurst G, et al. Psycho-physiological responses of repeated exposure to natural and urban environments. Landsc Urban Plan. 2021;209:104061. doi:10.1016/j.landurbplan.2021.104061. [DOI: 10.1016/j.landurbplan.2021.104061]
  19. Hao J, Chen Z, Remis A, He Z. Virtual reality-based rehabilitation to restore motor function in people with amputation: a systematic literature review. Am J Phys Med Rehabil. 2023;102(5):468-474. doi:10.1097/PHM.0000000000002150. [DOI: 10.1097/PHM.0000000000002150]
  20. Di Maio S, Keller J, Hohl DH, Schwarzer R, Knoll N. Habits and self-efficacy moderate the effects of intentions and planning on physical activity. Br J Health Psychol. 2021;26(1):50-66. doi:10.1111/bjhp.12452. [DOI: 10.1111/bjhp.12452]
  21. Lin RC, Chiang SL, Heitkemper MM, et al. Effectiveness of early rehabilitation combined with virtual reality training on muscle strength, mood state, and functional status in patients with acute stroke: a randomized controlled trial. Worldviews Evid Based Nurs. 2020;17(2):158-167. doi:10.1111/wvn.12429. [DOI: 10.1111/wvn.12429]
  22. Bilika P, Karampatsou N, Stavrakakis G, et al. Virtual reality-based exercise therapy for patients with chronic musculoskeletal pain: a scoping review. Healthcare. 2023;11(17):2412. doi:10.3390/healthcare11172412. [DOI: 10.3390/healthcare11172412]
  23. Smith MJ, Liehr PR. Middle Range Theory for Nursing. 4thedition. LLC. Springer Publishing Company; 2018.
  24. Burrai F, Ortu S, Marinucci M, De Marinis MG, Piredda M. Effectiveness of immersive virtual reality in people with cancer undergoing antiblastic therapy: a randomized controlled trial. Semin Oncol Nurs. 2023;39(4):151470. doi:10.1016/j.soncn.2023.151470. [DOI: 10.1016/j.soncn.2023.151470]
  25. Wang L, Ma L, Yang J, Wu J. Human somatosensory processing and artificial somatosensation. Cyborg Bionic Syst. 2021;2021:9843259. doi:10.34133/2021/9843259. [DOI: 10.34133/2021/9843259]
  26. Georgiev DD. Inner privacy of conscious experiences and quantum information. Biosystems. 2020;187:104051. doi:10.1016/j.biosystems.2019.104051. [DOI: 10.1016/j.biosystems.2019.104051]
  27. Burrai F, Othman S, Brioni E, et al. Effects of virtual reality in patients undergoing dialysis: study protocol. Holist Nurs Pract. 2019;33(6):327-337. doi:10.1097/HNP.0000000000000330. [DOI: 10.1097/HNP.0000000000000330]
  28. Klapp ST, Maslovat D, Jagacinski RJ. The bottleneck of the psychological refractory period effect involves timing of response initiation rather than response selection. Psychon Bull Rev. 2019;26(1):29-47. doi:10.3758/s13423-018-1498-6. [DOI: 10.3758/s13423-018-1498-6]
  29. Scates D, Dickinson JI, Sullivan K, Cline H, Balaraman R. Using nature-inspired virtual reality as a distraction to reduce stress and pain among cancer patients. Environ Behav. 2020;52(8):895-918. doi:10.1177/0013916520916259. [DOI: 10.1177/0013916520916259]
  30. Jimenez MP, DeVille NV, Elliott EG, et al. Associations between nature exposure and health: a review of the evidence. Int J Environ Res Public Health. 2021;18(9):4790. doi:10.3390/ijerph18094790. [DOI: 10.3390/ijerph18094790]
  31. Burrai F, De Marinis MG, Piredda M. Virtual Reality During Chemotherapy Infusion. Holist Nurs Pract. Published online August 15, 2023. doi:10.1097/HNP.0000000000000616. [DOI: 10.1097/HNP.0000000000000616]
  32. Mouatt B, Smith AE, Mellow ML, Parfitt G, Smith RT, Stanton TR. The use of virtual reality to influence motivation, affect, enjoyment, and engagement during exercise: a scoping review. Front Virtual Real. 2020;1. doi:10.3389/frvir.2020.564664. [DOI: 10.3389/frvir.2020.564664]
  33. Burrai F, Sguanci M, Petrucci G, De Marinis MG, Piredda M. Effectiveness of immersive virtual reality on anxiety, fatigue and pain in patients with cancer undergoing chemotherapy: a systematic review and meta-analysis. Eur J Oncol Nurs. 2023;64:102340. doi:10.1016/j.ejon.2023.102340. [DOI: 10.1016/j.ejon.2023.102340]
  34. Cypress BS, Caboral-Stevens M. “Sense of Presence” in immersive virtual reality environment: an evolutionary concept analysis. Dimens Crit Care Nurs. 2022;41(5):235-245. doi:10.1097/DCC.0000000000000538. [DOI: 10.1097/DCC.0000000000000538]
  35. Slater M, Banakou D, Beacco A, Gallego J, Macia-Varela F, Oliva R. A separate reality: an update on place illusion and plausibility in virtual reality. Front Virtual Real. 2022;3. doi:10.3389/frvir.2022.914392. [DOI: 10.3389/frvir.2022.914392]
  36. Yoshida T, Otaka Y, Osu R, Kumagai M, Kitamura S, Yaeda J. Motivation for rehabilitation in patients with subacute stroke: a qualitative study. Front Rehabil Sci. 2021;2. doi:10.3389/fresc.2021.664758. [DOI: 10.3389/fresc.2021.664758]
  37. Legault L. Intrinsic and extrinsic motivation. In: Encyclopedia of Personality and Individual Differences. Springer International Publishing; 2016:1-4. doi:10.1007/978-3-319-28099-8_1139-1.
  38. Teixeira PJ, Carraça EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):78. doi:10.1186/1479-5868-9-78. [DOI: 10.1186/1479-5868-9-78]
  39. Linge AD, Bjørkly SK, Jensen C, Hasle B. Bandura’s self-efficacy model used to explore participants’ experiences of health, lifestyle, and work after attending a vocational rehabilitation program with lifestyle intervention - a focus group study. J Multidiscip Healthc. 2021;14:3533-3548. doi:10.2147/JMDH.S334620. [DOI: 10.2147/JMDH.S334620]
  40. Rizzato A, Pizzichemi M, Gobbi E, et al. Effectiveness and therapeutic compliance of digital therapy in shoulder rehabilitation: a randomized controlled trial. J Neuroeng Rehabil. 2023;20(1):87. doi:10.1186/s12984-023-01188-7. [DOI: 10.1186/s12984-023-01188-7]
  41. Shen SC, Huang KH, Kung PT, Chiu LT, Tsai WC. Incidence, risk, and associated factors of depression in adults with physical and sensory disabilities: a nationwide population-based study. PLoS One. 2017;12(3):e0175141. doi:10.1371/journal.pone.0175141. [DOI: 10.1371/journal.pone.0175141]
  42. Tejera DM, Beltran-Alacreu H, Cano-de-la-cuerda R, et al. Effects of virtual reality versus exercise on pain, functional, somatosensory and psychosocial outcomes in patients with non-specific chronic neck pain: a randomized clinical trial. Int J Environ Res Public Health. 2020;17(16):5950. doi:10.3390/ijerph17165950. [DOI: 10.3390/ijerph17165950]
  43. Gumaa M, Rehan Youssef A. Is virtual reality effective in orthopedic rehabilitation? A systematic review and meta-analysis. Phys Ther. 2019;99(10):1304-1325. doi:10.1093/ptj/pzz093. [DOI: 10.1093/ptj/pzz093]
  44. Baker NA, Polhemus AH, Haan Ospina E, et al. The state of science in the use of virtual reality in the treatment of acute and chronic pain. Clin J Pain. 2022;38(6):424-441. doi:10.1097/AJP.0000000000001029. [DOI: 10.1097/AJP.0000000000001029]
  45. Schoenfeld BJ, Grgic J. Effects of range of motion on muscle development during resistance training interventions: a systematic review. SAGE Open Med. 2020;8:2050312120901559. doi:10.1177/2050312120901559. [DOI: 10.1177/2050312120901559]
  46. Wang DXM, Yao J, Zirek Y, Reijnierse EM, Maier AB. Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis. J Cachexia Sarcopenia Muscle. 2020;11(1):3-25. doi:10.1002/jcsm.12502. [DOI: 10.1002/jcsm.12502]
  47. Richings L, Nelson D, Goosey-Tolfrey V, Donnellan C, Booth V. Effectiveness of the “Evidence-Based Scientific Exercise Guidelines” in increasing cardiorespiratory fitness, cardiometabolic health, and muscle strength in acute spinal cord injury rehabilitation: a systematic review. Arch Rehabil Res Clin Transl. 2023;5(3):100278. doi:10.1016/j.arrct.2023.100278. [DOI: 10.1016/j.arrct.2023.100278]
  48. Wang J, Kuo WY, Chen MC, Chen CY. Impact of rehabilitation adherence and depressive symptoms on post-stroke self-care ability and quality of life: a longitudinal study. Top Stroke Rehabil. 2023:361-371. doi:10.1080/10749357.2023.2259652 [DOI: 10.1080/10749357.2023.2259652]
  49. Dilanchian AT, Andringa R, Boot WR. A pilot study exploring age differences in presence, workload, and cybersickness in the experience of immersive virtual reality environments. Front Virtual Real. 2021;2. doi:10.3389/frvir.2021.736793. [DOI: 10.3389/frvir.2021.736793]
  50. Stanney K, Fidopiastis C, Foster L. Virtual reality is sexist: but it does not have to be. Front Robot AI. 2020;7:7. doi:10.3389/frobt.2020.00004. [DOI: 10.3389/frobt.2020.00004]
  51. Lindeman DA, Kim KK, Gladstone C, Apesoa-Varano EC. Technology and caregiving: emerging interventions and directions for research. Gerontologist. 2020;60(Suppl 1):S41-S49. doi:10.1093/geront/gnz178. [DOI: 10.1093/geront/gnz178]
  52. Salanitri D, Hare C, Borsci S, Lawson G, Sharples S, Waterfield B. Relationship between trust and usability in virtual environments: an ongoing study. Human-Comput Interact Design Eval. 2015;49-59. doi:10.1007/978-3-319-20901-2_5. [DOI: 10.1007/978-3-319-20901-2_5]
  53. Parsons TD. Ethical challenges of using virtual environments in the assessment and treatment of psychopathological disorders. J Clin Med. 2021;10(3):378. doi:10.3390/jcm10030378. [DOI: 10.3390/jcm10030378]

MeSH Term

Humans
Persons with Disabilities
Virtual Reality
Self Efficacy

Word Cloud

Created with Highcharts 10.0.0virtualrealityimmersiveiehealthoutcomesrehabilitationadherenceImmersivemechanismsprimarychallengeimpedingoptimalpatientsdisabilitieslackemergespromisinginterventionpotentialsignificantlyenhancekeyoutcomepaperpresentssituation-specifictheoryoutlinescanpromoteOutcomesencompasspsychologicalmotivationself-efficacymoodstatewellphysicalresponsespainmanagementmusclestrengthMechanismsinfluencesexplainedproximaldistalmediatorsattentionsensepresenceenjoymentPossiblemoderatorsagegendersocialsupporttrusttechnologycognitivestatusalsodescribedSituation-SpecificTheoryUseVirtualRealityRehabilitationPatientsDisabilities

Similar Articles

Cited By

No available data.