Specificity and diversity of Klebsiella pneumoniae phage-encoded capsule depolymerases.

Max J Cheetham, Yunlong Huo, Maria Stroyakovski, Li Cheng, Daniel Wan, Anne Dell, Joanne M Santini
Author Information
  1. Max J Cheetham: Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K.
  2. Yunlong Huo: Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K.
  3. Maria Stroyakovski: Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K.
  4. Li Cheng: Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K.
  5. Daniel Wan: Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K.
  6. Anne Dell: Department of Life Sciences, Imperial College London, London, SW7 2AZ, U.K.
  7. Joanne M Santini: Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6AA, U.K. ORCID

Abstract

Klebsiella pneumoniae is an opportunistic pathogen with significant clinical relevance. K. pneumoniae-targeting bacteriophages encode specific polysaccharide depolymerases with the ability to selectively degrade the highly varied protective capsules, allowing for access to the bacterial cell wall. Bacteriophage depolymerases have been proposed as novel antimicrobials to combat the rise of multidrug-resistant K. pneumoniae strains. These enzymes display extraordinary diversity, and are key determinants of phage host range, however with limited data available our current knowledge of their mechanisms and ability to predict their efficacy is limited. Insight into the resolved structures of Klebsiella-specific capsule depolymerases reveals varied catalytic mechanisms, with the intra-chain cleavage mechanism providing opportunities for recombinant protein engineering. A detailed comparison of the 58 characterised depolymerases hints at structural and mechanistic patterns, such as the conservation of key domains for substrate recognition and phage tethering, as well as diversity within groups of depolymerases that target the same substrate. Another way to understand depolymerase specificity is by analyzing the targeted capsule structures, as these may share similarities recognizable by bacteriophage depolymerases, leading to broader substrate specificities. Although we have only begun to explore the complexity of Klebsiella capsule depolymerases, further research is essential to thoroughly characterise these enzymes. This will be crucial for understanding their mechanisms, predicting their efficacy, and engineering optimized enzymes for therapeutic applications.

Keywords

References

  1. Appl Environ Microbiol. 2002 Apr;68(4):1485-90 [PMID: 11916659]
  2. mBio. 2024 Mar 13;15(3):e0351923 [PMID: 38349137]
  3. Int J Biol Macromol. 2023 Jul 31;244:125403 [PMID: 37330077]
  4. J Biol Chem. 2021 Oct;297(4):101014 [PMID: 34358563]
  5. Front Microbiol. 2019 Dec 03;10:2768 [PMID: 31849905]
  6. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27620-27626 [PMID: 33087568]
  7. Front Microbiol. 2019 Nov 15;10:2649 [PMID: 31803168]
  8. Structure. 1995 Sep 15;3(9):853-9 [PMID: 8535779]
  9. Bioinformatics. 2010 Apr 1;26(7):889-95 [PMID: 20164152]
  10. Carbohydr Res. 1977 Oct;58(2):443-51 [PMID: 912695]
  11. Viruses. 2016 Dec 01;8(12): [PMID: 27916936]
  12. Appl Microbiol Biotechnol. 2016 Mar;100(5):2141-51 [PMID: 26767986]
  13. J Biomed Sci. 2023 May 20;30(1):31 [PMID: 37210493]
  14. Front Microbiol. 2020 Feb 14;11:218 [PMID: 32117192]
  15. Int J Biol Macromol. 2024 Apr;265(Pt 2):130917 [PMID: 38513899]
  16. Front Cell Infect Microbiol. 2021 Jun 18;11:686090 [PMID: 34222050]
  17. Int J Mol Sci. 2023 Feb 17;24(4): [PMID: 36835449]
  18. Microbiol Spectr. 2021 Sep 3;9(1):e0102321 [PMID: 34431721]
  19. Virus Res. 2022 Dec;322:198951 [PMID: 36191686]
  20. Cell Rep. 2023 Jun 27;42(6):112551 [PMID: 37224021]
  21. Glycobiology. 2010 Dec;20(12):1547-73 [PMID: 20805221]
  22. Virology. 1975 Mar;64(1):236-46 [PMID: 1114709]
  23. PLoS Med. 2023 May 22;20(5):e1004239 [PMID: 37216371]
  24. mBio. 2021 May 4;12(3): [PMID: 33947754]
  25. J Infect Dis. 2014 Dec 1;210(11):1734-44 [PMID: 25001459]
  26. Front Microbiol. 2020 Jan 10;10:2949 [PMID: 31998258]
  27. Biochemistry (Mosc). 2020 May;85(5):567-574 [PMID: 32571186]
  28. Infect Chemother. 2018 Sep;50(3):210-218 [PMID: 30270580]
  29. Virus Res. 2023 Oct 15;336:199225 [PMID: 37741345]
  30. J Biomed Sci. 2022 Feb 7;29(1):9 [PMID: 35130876]
  31. PLoS One. 2013 Aug 02;8(8):e70092 [PMID: 23936379]
  32. Microbiol Spectr. 2023 Sep 26;:e0530422 [PMID: 37750730]
  33. mBio. 2023 Oct 31;14(5):e0132923 [PMID: 37707438]
  34. Antibiotics (Basel). 2021 Feb 01;10(2): [PMID: 33535705]
  35. Virus Genes. 2021 Oct;57(5):434-442 [PMID: 34156584]
  36. J Korean Med Sci. 2006 Oct;21(5):816-22 [PMID: 17043412]
  37. Appl Environ Microbiol. 2024 Apr 17;90(4):e0119723 [PMID: 38551353]
  38. Sci Rep. 2015 Oct 23;5:15573 [PMID: 26493302]
  39. Microorganisms. 2021 Mar 21;9(3): [PMID: 33801047]
  40. Antibiotics (Basel). 2020 Oct 25;9(11): [PMID: 33113762]
  41. Nucleic Acids Res. 2024 Jul 5;52(W1):W521-W525 [PMID: 38597606]
  42. Vet Res. 2024 May 7;55(1):59 [PMID: 38715095]
  43. BMC Bioinformatics. 2013 Feb 21;14:60 [PMID: 23432962]
  44. Comput Struct Biotechnol J. 2019 Oct 25;17:1360-1366 [PMID: 31762959]
  45. Microb Biotechnol. 2019 May;12(3):472-486 [PMID: 30706654]
  46. Front Microbiol. 2021 Aug 09;12:669618 [PMID: 34434173]
  47. Front Microbiol. 2021 Dec 22;12:750662 [PMID: 34992583]
  48. Curr Microbiol. 2009 Sep;59(3):274-81 [PMID: 19484297]
  49. Virology. 1974 Mar;58(1):306-9 [PMID: 4821701]
  50. Biofouling. 2010 Aug;26(6):729-37 [PMID: 20711894]
  51. Int J Mol Sci. 2023 Dec 09;24(24): [PMID: 38139119]
  52. BMC Microbiol. 2015 Jun 11;15:119 [PMID: 26063052]
  53. Appl Environ Microbiol. 2017 May 31;83(12): [PMID: 28389547]
  54. Front Microbiol. 2018 Oct 23;9:2517 [PMID: 30405575]
  55. J Virol. 2017 Feb 28;91(6): [PMID: 28077636]
  56. Front Immunol. 2022 Mar 21;13:843183 [PMID: 35386691]
  57. Sci Rep. 2017 Jul 4;7(1):4624 [PMID: 28676686]
  58. Adv Exp Med Biol. 2012;726:143-79 [PMID: 22297513]
  59. Bioinformatics. 2017 Nov 01;33(21):3396-3404 [PMID: 29036289]
  60. Nucleic Acids Res. 2022 Jan 7;50(D1):D571-D577 [PMID: 34850161]
  61. Cell Rep. 2023 Feb 28;42(2):112048 [PMID: 36753420]
  62. Adv Sci (Weinh). 2024 Sep;11(33):e2309972 [PMID: 38937990]
  63. Appl Microbiol Biotechnol. 2017 Apr;101(8):3103-3119 [PMID: 28337580]
  64. Front Microbiol. 2022 Jun 22;13:878800 [PMID: 35814656]
  65. Structure. 2020 Jun 2;28(6):613-624.e4 [PMID: 32386574]
  66. Acta Pharm Sin B. 2024 Jan;14(1):155-169 [PMID: 38239242]
  67. Structure. 2008 May;16(5):766-75 [PMID: 18462681]
  68. Pharmaceuticals (Basel). 2023 Nov 22;16(12): [PMID: 38139765]
  69. Nucleic Acids Res. 2005 Apr 22;33(7):2302-9 [PMID: 15849316]
  70. Res Microbiol. 2019 Apr - May;170(3):156-164 [PMID: 30716390]
  71. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 [PMID: 17592147]
  72. J Biol Chem. 2019 Nov 1;294(44):15973-15986 [PMID: 31501245]
  73. Pathogens. 2023 Nov 28;12(12): [PMID: 38133282]
  74. Nat Commun. 2024 May 22;15(1):4355 [PMID: 38778023]
  75. Nat Microbiol. 2022 Oct;7(10):1593-1604 [PMID: 36065064]
  76. Sci Rep. 2020 Nov 23;10(1):20338 [PMID: 33230270]
  77. Pharmaceutics. 2022 Sep 10;14(9): [PMID: 36145665]
  78. Int J Mol Sci. 2020 Apr 30;21(9): [PMID: 32365770]
  79. Virus Res. 2018 Jan 2;243:10-18 [PMID: 28988127]
  80. Virol Sin. 2022 Aug;37(4):538-546 [PMID: 35513275]
  81. Sci Rep. 2017 Feb 17;7:42711 [PMID: 28209973]

Grants

  1. BB/X511079/1/Biotechnology and Biological Sciences Research Council (BBSRC)
  2. EP/S022856/1/Engineering and Physical Sciences Research Council (EPSRC)

MeSH Term

Klebsiella pneumoniae
Bacteriophages
Glycoside Hydrolases
Bacterial Capsules
Substrate Specificity

Chemicals

Glycoside Hydrolases
capsular-polysaccharide galactohydrolase

Word Cloud

Created with Highcharts 10.0.0depolymerasescapsuleKlebsiellapneumoniaeenzymesdiversityphagemechanismssubstrateKpolysaccharideabilityvariedkeylimitedefficacystructuresengineeringdepolymeraseopportunisticpathogensignificantclinicalrelevancepneumoniae-targetingbacteriophagesencodespecificselectivelydegradehighlyprotectivecapsulesallowingaccessbacterialcellwallBacteriophageproposednovelantimicrobialscombatrisemultidrug-resistantstrainsdisplayextraordinarydeterminantshostrangehoweverdataavailablecurrentknowledgepredictInsightresolvedKlebsiella-specificrevealscatalyticintra-chaincleavagemechanismprovidingopportunitiesrecombinantproteindetailedcomparison58characterisedhintsstructuralmechanisticpatternsconservationdomainsrecognitiontetheringwellwithingroupstargetAnotherwayunderstandspecificityanalyzingtargetedmaysharesimilaritiesrecognizablebacteriophageleadingbroaderspecificitiesAlthoughbegunexplorecomplexityresearchessentialthoroughlycharacterisewillcrucialunderstandingpredictingoptimizedtherapeuticapplicationsSpecificityphage-encodedcapsular

Similar Articles

Cited By