Water sources selected for immature development of some African rainforest dwelling mosquitoes under different landscapes in Cameroon.

Marie Paul Audrey Mayi, Cyril Kowo, Foncha David Forfuet, Damian Nota Anong, Andongma Esack Fonda, Mirabel Elad, Charl��ne Jordane Piam Djomo, Timoleon Tchuinkam, Ravinder N M Sehgal, Anthony John Cornel
Author Information
  1. Marie Paul Audrey Mayi: Department of Microbiology, Faculty of Sciences of the University of Yaound�� I, Yaound��, Cameroon. ORCID
  2. Cyril Kowo: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon. ORCID
  3. Foncha David Forfuet: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon. ORCID
  4. Damian Nota Anong: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
  5. Andongma Esack Fonda: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon. ORCID
  6. Mirabel Elad: Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
  7. Charl��ne Jordane Piam Djomo: Department of Environmental Health, Higher Institute of Environmental Science, Yaound��, Cameroon.
  8. Timoleon Tchuinkam: Department of Animal Biology, Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit, University of Dschang, Dschang, Cameroon.
  9. Ravinder N M Sehgal: Department of Biology, San Francisco State University, San Francisco, CA, USA.
  10. Anthony John Cornel: Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California, Parlier, CA, USA. ORCID

Abstract

Little is known about the behaviors of African equatorial rain forest mosquito species and their potential role as sylvatic and bridge-vectors of various pathogens of animal and public health. In 2016 and 2017, the diversity and sources of water supporting immature development of mosquitoes in Talangaye Rainforest (South West Cameroon) before, during and after deforestation were investigated. Mosquito eggs, larvae and pupae were collected from 12 natural, seminatural, and artificial water sources and reared to adults. A total of 595 adult mosquitoes belonging to seven genera and at least 43 species were identified. Culex was the most abundant (56.3%) and was encountered in the majority in bamboo pots. Aedes and Uranotaenia species were mostly found in rock pools, while Anopheles and Hodgesia species solely prefer stream pools. In terms of mosquito abundance, rock pools were the most productive (29.91%) followed by bamboo pots (24.7%). Natural sites such as rock pools, tree holes, and stream pools recorded a greater number of species (S���=���21, 14 and 12 respectively). During the rainy season, rock pools (46.23%) and bamboo pots (18.7%) were the most productive water bodies, while in the dry season, bamboo pots (35.71%) and stream pools (35.71%) harbored the most mosquitoes. The disturbed and pristine-like habitats had the greatest number of mosquitoes and breeding sites compared to palm plantation. This study provides some useful data on water sources used for immature development of forest mosquito species in Southwest Cameroon and how some species might adapt to changing landscapes, especially due to deforestation.

Keywords

References

  1. Bull Entomol Res. 1965 Oct;56(1):17-35 [PMID: 4378566]
  2. Nature. 2008 Feb 21;451(7181):990-3 [PMID: 18288193]
  3. Bull World Health Organ. 1966;35(6):811-25 [PMID: 4381758]
  4. Trans R Soc Trop Med Hyg. 1979;73(5):483-97 [PMID: 394408]
  5. PLoS Negl Trop Dis. 2014 Aug 07;8(8):e3033 [PMID: 25101786]
  6. Nature. 2020 Aug;584(7820):175-176 [PMID: 32770149]
  7. Parasit Vectors. 2013 Nov 04;6(1):320 [PMID: 24499518]
  8. J Am Mosq Control Assoc. 2008 Sep;24(3):349-58 [PMID: 18939686]
  9. Malar J. 2002 Jun 21;1:8 [PMID: 12153709]
  10. Infect Dis Poverty. 2018 Jan 18;7(1):2 [PMID: 29343279]
  11. Ecohealth. 2012 Jun;9(2):217-28 [PMID: 22692799]
  12. Sci Rep. 2019 Oct 25;9(1):15335 [PMID: 31653914]
  13. Parasit Vectors. 2016 Sep 29;9(1):523 [PMID: 27682270]
  14. Insects. 2020 May 15;11(5): [PMID: 32429075]
  15. Parasit Vectors. 2012 Dec 07;5:286 [PMID: 23216815]
  16. Trends Parasitol. 2016 May;32(5):402-415 [PMID: 26907494]
  17. PLoS One. 2022 Sep 6;17(9):e0273774 [PMID: 36067179]
  18. J Vector Borne Dis. 2005 Jun;42(2):61-7 [PMID: 16161702]
  19. Bull World Health Organ. 1969;41(2):233-41 [PMID: 4391765]
  20. Parasit Vectors. 2016 Jul 07;9(1):387 [PMID: 27388293]
  21. J Med Entomol. 2022 Jan 12;59(1):248-256 [PMID: 34477878]
  22. J Med Entomol. 2003 Nov;40(6):921-9 [PMID: 14765671]
  23. Malar J. 2011 Dec 13;10:361 [PMID: 22166101]
  24. PLoS Pathog. 2011 Apr;7(4):e1002015 [PMID: 21490952]
  25. Bull Entomol Res. 1947 Jan;37(3):301-30 [PMID: 20284933]
  26. PLoS Negl Trop Dis. 2012;6(6):e1649 [PMID: 22720097]
  27. Int J Parasitol. 1998 Jun;28(6):955-69 [PMID: 9673874]
  28. Ethiop J Health Sci. 2011 Mar;21(1):57-66 [PMID: 22434986]
  29. Ann Trop Med Parasitol. 1984 Jun;78(3):307-18 [PMID: 6486937]
  30. Parasit Vectors. 2021 Oct 11;14(1):527 [PMID: 34635176]
  31. Am J Trop Med Hyg. 2007 Mar;76(3):450-60 [PMID: 17360867]
  32. Bull Entomol Res. 1949 May;40(1):149-68 [PMID: 18130380]
  33. J Med Entomol. 2022 Jul 13;59(4):1394-1403 [PMID: 35640028]
  34. J Vector Ecol. 2019 Dec;44(2):271-281 [PMID: 31729796]
  35. J Med Entomol. 2019 Feb 25;56(2):453-463 [PMID: 30428055]
  36. Proc Biol Sci. 2011 Dec 22;278(1725):3703-12 [PMID: 21561971]
  37. Ann Trop Med Parasitol. 1983 Dec;77(6):641-51 [PMID: 6140903]
  38. Parasit Vectors. 2023 Mar 21;16(1):110 [PMID: 36945055]
  39. Insects. 2021 Sep 12;12(9): [PMID: 34564259]
  40. PLoS Biol. 2006 Apr;4(4):e82 [PMID: 16494532]
  41. Trans R Soc Trop Med Hyg. 2009 Feb;103(2):109-21 [PMID: 18799177]
  42. Insects. 2020 Oct 30;11(11): [PMID: 33143104]
  43. PLoS Negl Trop Dis. 2017 Jul 13;11(7):e0005751 [PMID: 28704434]
  44. Med Vet Entomol. 2001 Mar;15(1):1-11 [PMID: 11297093]
  45. Am J Trop Med Hyg. 1946 Mar;26:189-208 [PMID: 21020339]
  46. Sci Rep. 2019 Oct 14;9(1):14753 [PMID: 31611571]
  47. Proc Biol Sci. 2011 Aug 22;278(1717):2446-54 [PMID: 21227970]
  48. Ecology. 2009 Apr;90(4):888-900 [PMID: 19449681]
  49. Annu Rev Entomol. 2001;46:729-60 [PMID: 11112185]
  50. Parasit Vectors. 2018 Jan 9;11(1):29 [PMID: 29316963]
  51. J Med Entomol. 2007 Jul;44(4):554-67 [PMID: 17695008]
  52. New Microbiol. 2013 Jul;36(3):211-27 [PMID: 23912863]
  53. Front Public Health. 2016 Oct 26;4:238 [PMID: 27833907]
  54. J Med Entomol. 2022 Jan 12;59(1):1-13 [PMID: 34734628]
  55. Int J Parasitol. 2000 Nov;30(12-13):1395-405 [PMID: 11113264]
  56. Disaster Med Public Health Prep. 2016 Oct;10(5):707-712 [PMID: 27021935]
  57. Am Econ Rev. 2017 May;107(5):516-21 [PMID: 29557569]
  58. Bull Soc Pathol Exot Filiales. 1961 Sep-Oct;54:1164-83 [PMID: 13887511]
  59. Am J Trop Med Hyg. 2007 Jan;76(1):95-102 [PMID: 17255236]
  60. Curr Infect Dis Rep. 2006 Jan;8(1):59-65 [PMID: 16448602]

Grants

  1. 983616/National Geographic Society

MeSH Term

Animals
Cameroon
Rainforest
Culicidae
Larva
Pupa
Mosquito Vectors
Ovum

Word Cloud

Created with Highcharts 10.0.0speciespoolsmosquitoessourceswaterCameroonbamboopotsrockforestmosquitoimmaturedevelopmentdeforestationstreamseasonAfrican12productive7%sitesnumber3571%breedinglandscapesLittleknownbehaviorsequatorialrainpotentialrolesylvaticbridge-vectorsvariouspathogensanimalpublichealth20162017diversitysupportingTalangayeRainforestSouthWestinvestigatedMosquitoeggslarvaepupaecollectednaturalseminaturalartificialrearedadultstotal595adultbelongingsevengeneraleast43identifiedCulexabundant563%encounteredmajorityAedesUranotaeniamostlyfoundAnophelesHodgesiasolelyprefertermsabundance2991%followed24NaturaltreeholesrecordedgreaterS���=���2114respectivelyrainy4623%18bodiesdryharboreddisturbedpristine-likehabitatsgreatestcomparedpalmplantationstudyprovidesusefuldatausedSouthwestmightadaptchangingespeciallydueWaterselectedrainforestdwellingdifferentsite

Similar Articles

Cited By