Analytical solution of a microrobot-blood vessel interaction model.

Gengxiang Wang, Andrew Bickerdike, Yang Liu, Antoine Ferreira
Author Information
  1. Gengxiang Wang: Exeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, Exeter, EX4 4QF UK.
  2. Andrew Bickerdike: Exeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, Exeter, EX4 4QF UK.
  3. Yang Liu: Exeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, Exeter, EX4 4QF UK.
  4. Antoine Ferreira: Laboratoire PRISME, INSA Centre Val de Loire, 18000 Bourges, France.

Abstract

This study develops a dynamics model of a microrobot vibrating in a blood vessel aiming to detect potential cancer metastasis. We derive an analytical solution for microrobot's motion, considering interactions with the vessel walls modelled by a linear spring-dashpot and a constant damping value for blood viscosity. The model facilitates instantaneous state transitions of the microrobot, such as contact with the vessel wall and free motion within the fluid. Amplitudes and phase angles from the transient solutions of dynamics model of the microrobot are solved at arbitrary moments, providing insights into its transient dynamics. The analytical solution of the proposed system is validated by experimental data, serving as a benchmark to examine the influence of pertinent parameters on microrobot's dynamic response. It is found that the contact force transmitted to the vessel wall, assessed by system's transmissibility function dependent on damping and frequency ratios, decreases with increasing damping ratio and intensifies when the frequency ratio is below . At the frequency ratio is equal to 1, resonance phenomenon is dominated by the magnification factor linked to the damping ratio, increasing the amplitude of resonance as damping decreases. Finally, different sets of system parameters, including excitation frequency and magnitude, fluid damping, vessel wall's stiffness and damping, reveal multi-periodic motions and fake collision of the microrobot with the vessel wall. Simulation results imply that these phenomena are minimally affected by vessel wall's stiffness but are significantly influenced by other parameters, such as fluid damping coefficient and damping coefficient of the blood vessel wall. This research provides a robust theoretical foundation for developing control strategies for microrobots aimed at detecting cancer metastasis.

Keywords

References

  1. Adv Sci (Weinh). 2022 Sep;9(25):e2106052 [PMID: 35843868]
  2. Sci Adv. 2018 Aug 24;4(8):eaat3276 [PMID: 30151426]
  3. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1950-3 [PMID: 21097005]
  4. Sci Adv. 2022 Mar 18;8(11):eabl7160 [PMID: 35302841]
  5. Science. 2019 Apr 5;364(6435):70-74 [PMID: 30948548]
  6. Sci Adv. 2020 Nov 13;6(46): [PMID: 33188022]
  7. Med Eng Phys. 2016 Apr;38(4):403-10 [PMID: 26857290]
  8. Nano Lett. 2024 Apr 11;: [PMID: 38602330]
  9. Adv Sci (Weinh). 2021 Jun;8(11):e2002085 [PMID: 34105297]
  10. Sci Adv. 2023 May 5;9(18):eadg4501 [PMID: 37146139]
  11. Ann Biomed Eng. 2023 Apr;51(4):679-701 [PMID: 36786901]
  12. Sci Robot. 2017 Mar 15;2(4): [PMID: 31552379]
  13. Soft Robot. 2019 Feb;6(1):54-68 [PMID: 30312145]
  14. Sci Adv. 2021 Oct 15;7(42):eabj0954 [PMID: 34644116]
  15. Research (Wash D C). 2024 Mar 26;7:0339 [PMID: 38550780]
  16. Front Neurorobot. 2022 Sep 07;16:923348 [PMID: 36160285]
  17. Sci Adv. 2020 May 06;6(19):eaaz8011 [PMID: 32494716]
  18. Science. 2019 Mar 29;363(6434): [PMID: 30923195]
  19. Micromachines (Basel). 2023 Dec 21;15(1): [PMID: 38276841]
  20. IEEE Trans Nanobioscience. 2017 Sep;16(6):463-475 [PMID: 28641266]
  21. Philos Trans A Math Phys Eng Sci. 2008 Mar 13;366(1866):679-704 [PMID: 17947209]

Word Cloud

Created with Highcharts 10.0.0vesseldampingdynamicsmodelmicrorobotsolutionwallfrequencyratiobloodfluidparameterscancermetastasisanalyticalmicrorobot'smotioncontacttransientsystemdecreasesincreasingresonancewall'sstiffnesscoefficientAnalyticalstudydevelopsvibratingaimingdetectpotentialderiveconsideringinteractionswallsmodelledlinearspring-dashpotconstantvalueviscosityfacilitatesinstantaneousstatetransitionsfreewithinAmplitudesphaseanglessolutionssolvedarbitrarymomentsprovidinginsightsproposedvalidatedexperimentaldataservingbenchmarkexamineinfluencepertinentdynamicresponsefoundforcetransmittedassessedsystem'stransmissibilityfunctiondependentratiosintensifiesequal1phenomenondominatedmagnificationfactorlinkedamplitudeFinallydifferentsetsincludingexcitationmagnituderevealmulti-periodicmotionsfakecollisionSimulationresultsimplyphenomenaminimallyaffectedsignificantlyinfluencedresearchprovidesrobusttheoreticalfoundationdevelopingcontrolstrategiesmicrorobotsaimeddetectingmicrorobot-bloodinteractionCancerdetectionImpactoscillatorMicrorobotVibro-impact

Similar Articles

Cited By

No available data.