Explainable brain age prediction: a comparative evaluation of morphometric and deep learning pipelines.

Maria Luigia Natalia De Bonis, Giuseppe Fasano, Angela Lombardi, Carmelo Ardito, Antonio Ferrara, Eugenio Di Sciascio, Tommaso Di Noia
Author Information
  1. Maria Luigia Natalia De Bonis: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
  2. Giuseppe Fasano: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
  3. Angela Lombardi: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy. angela.lombardi@poliba.it.
  4. Carmelo Ardito: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
  5. Antonio Ferrara: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
  6. Eugenio Di Sciascio: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
  7. Tommaso Di Noia: Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.

Abstract

Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimaging to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learning (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, interpretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test set ( with DNN and morphometric features and with a DenseNet-121 architecture). SHAP provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential utility for clinicians.

Keywords

References

  1. Med Image Anal. 2022 Jul;79:102470 [PMID: 35576821]
  2. EBioMedicine. 2021 Oct;72:103600 [PMID: 34614461]
  3. Neuroimage. 2022 Aug 1;256:119210 [PMID: 35462035]
  4. Neuroimage Clin. 2022;35:103082 [PMID: 35700598]
  5. Front Psychiatry. 2021 Jan 20;11:619629 [PMID: 33551880]
  6. Brain Inform. 2024 Jun 4;11(1):16 [PMID: 38833039]
  7. Front Neurosci. 2022 Dec 01;16:906290 [PMID: 36583102]
  8. Nat Commun. 2019 Nov 27;10(1):5409 [PMID: 31776335]
  9. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3858-3864 [PMID: 34892076]
  10. Mol Psychiatry. 2021 Aug;26(8):3829-3838 [PMID: 31822815]
  11. Front Aging Neurosci. 2019 Dec 10;11:348 [PMID: 31920628]
  12. PLoS One. 2016 Jul 13;11(7):e0157514 [PMID: 27410431]
  13. Front Aging Neurosci. 2024 Jan 08;15:1303036 [PMID: 38259636]
  14. Nat Mach Intell. 2020 Jan;2(1):56-67 [PMID: 32607472]
  15. Med Image Anal. 2021 Feb;68:101871 [PMID: 33197716]
  16. Brain Sci. 2020 Jun 11;10(6): [PMID: 32545374]
  17. Nat Commun. 2021 Jan 13;12(1):353 [PMID: 33441557]
  18. Comput Biol Med. 2022 Jan;140:105111 [PMID: 34891095]
  19. Front Aging Neurosci. 2018 Aug 22;10:252 [PMID: 30186151]
  20. Hum Brain Mapp. 2022 Jul;43(10):3113-3129 [PMID: 35312210]
  21. Neuroimage. 2022 Nov;263:119637 [PMID: 36122684]
  22. Artif Intell Med. 2023 Dec;146:102697 [PMID: 38042596]
  23. Neuroimage. 2023 Apr 15;270:119947 [PMID: 36801372]
  24. Hum Brain Mapp. 2021 Jun 1;42(8):2332-2346 [PMID: 33738883]
  25. Artif Intell Rev. 2023;56(6):5261-5315 [PMID: 36320613]
  26. Sensors (Basel). 2022 Oct 21;22(20): [PMID: 36298428]
  27. Comput Med Imaging Graph. 2021 Jul;91:101939 [PMID: 34082280]
  28. Geroscience. 2024 Feb;46(1):1-20 [PMID: 37733220]
  29. Eur J Radiol. 2023 May;162:110786 [PMID: 36990051]
  30. Neuroimage. 2021 Jan 1;224:117401 [PMID: 32979523]
  31. J Neuroradiol. 2024 May;51(3):265-273 [PMID: 37722591]
  32. Eur J Neurosci. 2018 Mar;47(5):399-416 [PMID: 29359873]
  33. IEEE Rev Biomed Eng. 2023;16:371-385 [PMID: 34428153]
  34. Ann Neurol. 2020 Jul;88(1):93-105 [PMID: 32285956]
  35. Front Neurol. 2019 Aug 14;10:789 [PMID: 31474922]
  36. Nat Neurosci. 2019 Oct;22(10):1617-1623 [PMID: 31551603]
  37. Neuroimage. 2006 Jul 1;31(3):968-80 [PMID: 16530430]
  38. Hum Brain Mapp. 2022 Jun 1;43(8):2554-2566 [PMID: 35138012]
  39. Neurobiol Aging. 2020 Aug;92:34-42 [PMID: 32380363]
  40. Hum Brain Mapp. 2020 Aug 15;41(12):3235-3252 [PMID: 32320123]
  41. Aust N Z J Psychiatry. 2019 Dec;53(12):1179-1188 [PMID: 31244332]
  42. Neurology. 2021 Aug 10;97(6):e554-e563 [PMID: 34261787]
  43. Psychiatry Res. 2015 Mar 30;231(3):227-35 [PMID: 25665840]
  44. Hum Brain Mapp. 2023 Feb 15;44(3):1118-1128 [PMID: 36346213]
  45. Front Neurosci. 2021 May 28;15:674055 [PMID: 34122000]
  46. Trends Neurosci. 2017 Dec;40(12):681-690 [PMID: 29074032]

Word Cloud

Created with Highcharts 10.0.0agebrainmorphometricperformanceXAIpredictionmethodsinterpretabilityclinicalutilitypipelinesBrainneuroimagingMRIdeeplearningstudycomparativeevaluationtwofeaturesneuralnetworksArtificialIntelligenceSHAPpipelineGrad-CAMDeepSHAPresultsbiomarkerreflectinghealthrelativechronologicalincreasinglyuseddetectearlysignsneurodegenerativediseasessupportpersonalizedtreatmentplansTwoprimaryapproachesemerged:featureextractionscansDLappliedrawdataHoweversystematiccomparisonregardinglimitedpresentpipelines:oneusingFreeSurferemploying3DconvolutionalCNNsUsingmultisitedatasetassessedmodelpredictionseXplainableapplyingfeature-basedCNN-basedshowcomparableLeave-One-Site-OutLOSOvalidationachievingstate-of-the-artindependenttestsetDNNDenseNet-121architectureprovidedconsistentinterpretableexhibitedgreatervariabilityworkneededassessaddressescriticalgapsystematicallycomparingmultipleacrossdistinctfindingsunderscoreimportanceintegratingpracticeofferinginsightsoutputsvarypotentialcliniciansExplainableprediction:ConvolutionalEXplainableMorphometry

Similar Articles

Cited By