The response of the benchmark healthcare index of India to COVID-19 pandemic: a return volatility approach.

Peeyush Bangur
Author Information
  1. Peeyush Bangur: Institute of Management Studies, Devi Ahilya Vishwavidyalaya, Indore, India.

Abstract

PURPOSE: From poor healthcare infrastructure to vaccine donors, India has traveled a long way. In this study, the author tried to find the investment certainty and persistence of volatility in the Indian healthcare system due to COVID-19.
DESIGN/METHODOLOGY/APPROACH: Using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH 1,1) model, this study quantifies the change in the conditional variance after the first case report of COVID-19. The author has used the S&P BSE HEALTHCARE index time series to analyze India's healthcare infrastructure and practices.
FINDINGS: The author found evidence of a decrease in investment certainty in investments related to India's healthcare infrastructure and practices after the first case report of COVID-19. Furthermore, the estimation of the econometric model suggests the presence of a large degree of volatility persistence in the S&P BSE HEALTHCARE index.
ORIGINALITY/VALUE: This research would be the first of its kind where the return volatility of the Indian healthcare sector has been discussed. Also, this research quantifies the return volatility of the healthcare sector during the pre- and post-COVID-19 period.

Keywords

References

  1. Agarwal, R. and Gaule, P. (2022), ���What drives innovation? Lessons from Covid-19 r&d���, Journal of Health Economics, Vol. 82, 102591, doi: 10.1016/j.jhealeco.2022.102591.
  2. Ali, M., Alam, N. and Rizvi, S.A.R. (2020), ���Coronavirus (COVID-19)-an epidemic or pandemic for financial markets���, Journal of Behavioral and Experimental Finance, Vol. 27, 100341, doi: 10.1016/j.jbef.2020.100341.
  3. Apergis, N. and Apergis, E. (2020), ���The role of Covid-19 for Chinese stock returns: evidence from a GARCHX model���, Asia-Pacific Journal of Accounting and Economics, Vol. 29 No. 5, pp. 1175-1183, doi: 10.1080/16081625.2020.1816185.
  4. Ashraf, B.N. (2020), ���Stock markets��� reaction to COVID-19: cases or fatalities?���, Research in International Business and Finance, Vol. 54, 101249, doi: 10.1016/j.ribaf.2020.101249.
  5. Bach, L., Guillouzouic, A. and Lgouyres, C. (2021), ���Does holding elections during a Covid-19 pandemic put the lives of politicians at risk?���, Journal of Health Economics, Vol. 78, 102462, doi: 10.1016/j.jhealeco.2021.102462.
  6. Baker, S.R., Bloom, N., Davis, S.J. and Terry, S.J. (2020), ���Covid-induced economic uncertainty���, (No. w26983). National Bureau of Economic Research, doi: 10.3386/w26983
  7. Bangur, P. (2019), ���Investment certainty and demonetization: evidence from India���, Journal of Private Equity, Vol. 22 No. 4, pp. 60-69, doi: 10.3905/jpe.2019.1.086.
  8. Barber, A. and West, J. (2021), ���Conditional cash lotteries increase COVID-19 vaccination rates���, Journal of Health Economics, Vol. 81, 102578, doi: 10.1016/j.jhealeco.2021.102578.
  9. Behera, D.K., Sabreen, M. and Sharma, D. (2021), ���The impact of COVID-19 on the Indian economy���, International Review of Applied Economics, Vol. 35 No. 6, pp. 870-885, doi: 10.1080/02692171.2021.1962815.
  10. Bhuiyan, M.A.M., Mahmud, S., Romyull, M. and Tasnim, N. (2021), ���Volatility estimation for COVID-19 daily rates using Kalman filtering technique���, Results in Physics, Vol. 26, 104291, doi: 10.1016/j.rinp.2021.104291.
  11. Bolatov, A.K., Seisembekov, T.Z., Askarova, A.Z. and Pavalkis, D. (2021), ���Barriers to COVID-19 vaccination among medical students in Kazakhstan: development, validation, and use of a new COVID-19 vaccine Hesitancy Scale���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 12, pp. 4982-4992, doi: 10.1080/21645515.2021.1982280.
  12. Bollerslev, T. (1986), ���Generalized autoregressive conditional heteroskedasticity���, Journal of Econometrics, Vol. 31 No. 3, pp. 307-327, doi: 10.1016/0304-4076(86)90063-1.
  13. Borri, N., Drago, F., Santantonio, C. and Sobbrio, F. (2021), ���The ���great lockdown���: inactive workers and mortality by Covid-19���, Health Economics, Vol. 30 No. 10, pp. 2367-2382, doi: 10.1002/hec.4383.
  14. Bouri, E., Naeem, M.A., Nor, S.M., Mbarki, I. and Saeed, T. (2021), ���Government responses to COVID-19 and industry stock returns���, Economic Research-EkonomskaIstra��ivanja, Vol. 35 No. 1, pp. 1967-1990, doi: 10.1080/1331677X.2021.1929374.
  15. Butterworth, D. (2000), ���The impact of futures trading on underlying stock index volatility: the case of the FTSE Mid 250 contract���, Applied Economics Letters, Vol. 7 No. 7, pp. 439-442, doi: 10.1080/135048500351131.
  16. Cantor, J., Sood, N., Bravata, D.M., Pera, M. and Whaley, C. (2022), ���The impact of the COVID-19 pandemic and policy response on health care utilization: evidence from county-level medical claims and cell phone data���, Journal of Health Economics, Vol. 82, 102581, doi: 10.1016/j.jhealeco.2022.102581.
  17. Choi, C. and Jung, H. (2021), ���COVID-19���s impacts on the Korean stock market���, Applied Economics Letters, Vol. 29 No. 11, pp. 974-978, doi: 10.1080/13504851.2021.1904099.
  18. Choudhary, O.P., Priyanka, C. and Singh, I. (2021), ���Vaccine certificate during domestic traveling: a potential initiative to prevent COVID-19 waves in India���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 10, pp. 3487-3488, doi: 10.1080/21645515.2021.1936862.
  19. Cooper, S., van Rooyen, H. and Wiysonge, C.S. (2021), ���COVID-19 vaccine hesitancy in South Africa: how can we maximize uptake of COVID-19 vaccines?���, Expert Review of Vaccines, Vol. 20 No. 8, pp. 921-933, doi: 10.1080/14760584.2021.1949291.
  20. Corbet, S., Hou, Y.G., Hu, Y., Larkin, C., Lucey, B. and Oxley, L. (2021), ���Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic���, Finance Research Letters, Vol. 45, 102137, doi: 10.1016/j.frl.2021.102137.
  21. Courbage, C. and Peter, R. (2021), ���On the effect of uncertainty on personal vaccination decisions���, Health Economics, Vol. 30 No. 10, pp. 2937-2942, doi: 10.1002/hec.4405.
  22. Cronin, C.J. and Evans, W.N. (2021), ���Total shutdowns, targeted restrictions, or individual responsibility: how to promote social distancing in the COVID-19 Era?���, Journal of Health Economics, Vol. 79, 102497, doi: 10.1016/j.jhealeco.2021.102497.
  23. Di Porto, E., Naticchioni, P. and Scrutinio, V. (2022), ���Lockdown, essential sectors, and Covid-19: lessons from Italy���, Journal of Health Economics, Vol. 81, 102572, doi: 10.1016/j.jhealeco.2021.102572.
  24. Dickey, D.A. and Fuller, W.A. (1979), ���Distribution of the estimators for autoregressive time series with a unit root���, Journal of the American Statistical Association, Vol. 74 No. 366a, pp. 427-431, doi: 10.2307/2286348.
  25. Engle, R.F. (1982), ���Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation���, Econometrica: Journal of the Econometric Society, Vol. 50 No. 4, pp. 987-1007, doi: 10.2307/1912773.
  26. Fama, E.F. (1970), ���Efficient capital markets: a review of theory and empirical work���, The Journal of Finance, Vol. 25 No. 2, p. 383, doi: 10.2307/2325486, Papers and Proceedings of the Twenty-Eighth Annual Meeting of the American Finance Association New York, N.Y. December, 28-30, 1969, pp. 383-417, available at: https://www.jstor.org/stable/2325486
  27. Gopalan, H.S. and Misra, A. (2020), ���COVID-19 pandemic and challenges for socio-economic issues, healthcare and national health programs in India���, Diabetes and Metabolic Syndrome: Clinical Research Reviews, Vol. 14 No. 5, pp. 757-759, doi: 10.1016/j.dsx.2020.05.041.
  28. Hinson, R.E., Hein, W., Tettey, L.N., Nartey, B.A., Harant, A., Struck, N.S. and Fobil, J.N. (2021), ���Critical prerequisites for Covid-19 vaccine acceleration: a developing economy perspective���, Journal of Public Affairs, Vol. 21 No. 4, e2723, doi: 10.1002/pa.2723.
  29. Huh, J. and Dubey, A. (2021), ���COVID-19 vaccination campaign trends and challenges in select Asian countries���, Asian Journal of Political Science, Vol. 29 No. 3, pp. 274-300, doi: 10.1080/02185377.2021.1979062.
  30. Issanov, A., Akhmetzhanova, Z., Riethmacher, D. and ljofan, M. (2021), ���Knowledge, attitude, and practice toward COVID-19 vaccination in Kazakhstan: a cross-sectional study���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 10, pp. 3394-3400, doi: 10.1080/21645515.2021.1925054.
  31. Jarque, C.M. and Bera, A.K. (1987), ���A test for normality of observations and regression residuals���, International Statistical Review/Revue Internationale de Statistique, Vol. 55 No. 2, pp. 163-172, doi: 10.2307/1403192.
  32. Jiang, T., Zhou, X., Wang, H., Dong, S., Wang, M., Akezhuoli, H. and Zhu, H. (2021a), ���COVID-19 vaccination intention and influencing factors among different occupational risk groups: a cross-sectional study���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 10, pp. 3433-3440, doi: 10.1080/21645515.2021.1930473.
  33. Jiang, C., Zhang, Y., Razi, U. and Kamran, H.W. (2021b), ���The asymmetric effect of COVID-19 outbreak, commodities prices and policy uncertainty on financial development in China: evidence from QARDL approach���, Economic Research-EkonomskaIstra��ivanja, Vol. 35 No. 1, pp. 2003-2022, doi: 10.1080/1331677X.2021.1930092.
  34. Kanabar, K. and Bhatt, N. (2021), ���Co-WIN as communication platform for managing COVID-19 in India���, Media Asia, Vol. 49 No. 2, pp. 155-163, doi: 10.1080/01296612.2021.1990465.
  35. Karaivanov, A., Lu, S.E., Shigeoka, H., Chen, C. and Pamplona, S. (2021), ���Face masks, public policies and slowing the spread of COVID-19: evidence from Canada���, Journal of Health Economics, Vol. 78, 102475, doi: 10.1016/j.jhealeco.2021.102475.
  36. Kumar, V.M., Pandi-Perumal, S.R., Trakht, I. and Thyagarajan, S.P. (2021), ���Strategy for COVID-19 vaccination in India: the country with the second highest population and number of cases���, Npj Vaccines, Vol. 6 No. 1, pp. 1-7, doi: 10.1038/s41541-021-00327-2.
  37. Le, K. and Nguyen, M. (2021), ���The psychological consequences of COVID-19 lockdowns���, International Review of Applied Economics, Vol. 35 No. 2, pp. 147-163, doi: 10.1080/02692171.2020.1853077.
  38. Li, W., Chien, F., Kamran, H.W., Aldeehani, T.M., Sadiq, M., Nguyen, V.C. and Hesary, F.T. (2021), ���The nexus between COVID-19 fear and stock market volatility���, Economic Research-EkonomskaIstra��ivanja, Vol. 35 No. 1, pp. 1765-1785, doi: 10.1080/1331677X.2021.1914125.
  39. Liu, H., Manzoor, A., Wang, C., Zhang, L. and nzoor, Z. (2020), ���The COVID-19 outbreak and affected countries stock markets response���, International Journal of Environmental Research and Public Health, Vol. 17 No. 8, p. 2800, doi: 10.3390/ijerph17082800.
  40. Mazur, M., Dang, M. and Vega, M. (2021), ���COVID-19 and the march 2020 stock market crash. Evidence from S&1500���, Finance Research Letters, Vol. 38, 101690, doi: 10.1016/j.frl.2020.101690.
  41. Mirza, N., Rahat, B., Naqvi, B. and Rizvi, S.K.A. (2020), ���Impact of Covid-19 on corporate solvency and possible policy responses in the EU���, The Quarterly Review of Economics and Finance, Vol. 87, pp. 181-190, doi: 10.1016/j.qref.2020.09.002.
  42. Mishra, M.K. (2020), The World after COVID-19 and its Impact on Global Economy, ZBW ��� Leibniz Information Centre for Economics, available at: http://hdl.handle.net/10419/215931
  43. Mohanta, K.K., Sharanappa, D.S. and Aggarwal, A. (2021), ���Efficiency analysis in the management of COVID-19 pandemic in India based on data envelopment analysis���, Current Research in Behavioral Sciences, Vol. 2, 100063, doi: 10.1016/j.crbeha.2021.
  44. Orea, L. and ��lvarez, I.C. (2022), ���How effective has the Spanish lockdown been to battle COVID-19? A spatial analysis of the coronavirus propagation across provinces���, Health Economics, Vol. 31 No. 1, pp. 154-173, doi: 10.1002/hec.4437.
  45. Pak, A., Adegboye, O.A., Adekunle, A.I., Rahman, K.M., McBryde, E.S. and Eisen, D.P. (2020), ���Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness���, Frontiers in Public Health, Vol. 8, 241, doi: 10.3389/fpubh.2020.00241.
  46. Panda, D.S., Giri, R.K., Nagarajappa, A.K. and Basha, S. (2021), ���Covid-19 vaccine, acceptance, and concern of safety from public perspective in the state of Odisha, India���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 10, pp. 3333-3337, doi: 10.1080/21645515.2021.1924017.
  47. Paul, S. (2021), ���Vulnerability and the resilience against Covid-19 in India���, Journal of the Asia Pacific Economy, Vol. 28 No. 4, pp. 1373-1391, doi: 10.1080/13547860.2021.1915545.
  48. Rajkumar, E., Gopi, A., Joshi, A., Thomas, A.E., Arunima, N.M., Ramya, G.S., Kulkarni, P., Rahul, P., Georg, A.J., Romate, J. and Abraham, J. (2023), ���Applications, benefits and challenges of telehealth in India during COVID-19 pandemic and beyond: a systematic review���, BMC Health Services Research, Vol. 23 No. 1, p. 7, doi: 10.1186/s12913-022-08970-8.
  49. Rizvi, S.K.A., Mirza, N., Naqvi, B. and Rahat, B. (2020), ���Covid-19 and asset management in EU: a preliminary assessment of performance and investment styles���, Journal of Asset Management, Vol. 21 No. 4, pp. 281-291, doi: 10.1057/s41260-020-00172-3.
  50. Sherman, S.M., Smith, L.E., Sim, J., Aml��t, R., Cutts, M., Dasch, H., Rubin, J. and Sevdalis, N. (2021), ���COVID-19 vaccination intention in the UK: results from the COVID-19 vaccination acceptability study (CoVAccS), a nationally representative cross-sectional survey���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 6, pp. 1612-1621, doi: 10.1080/21645515.2020.1846397.
  51. Szilagyi, P.G., Thomas, K., Shah, M.D., Vizueta, N., Cui, Y., Vangala, S. and Kapteyn, A. (2021), ���Likelihood of COVID-19 vaccination by subgroups across the US: post-election trends and disparities���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 10, pp. 3262-3267, doi: 10.1080/21645515.2021.1929695.
  52. Tsay, R.S. (2005), Analysis of Financial Time Series, John Wiley & Sons, Chicago, Vol. 543, pp. 97-122, doi: 10.1002/0471746193.
  53. Varma, Y., Venkataramani, R., Kayal, P. and Maiti, M. (2021), ���Short-term impact of COVID-19 on Indian stock market���, Journal of Risk and Financial Management, Vol. 14 No. 11, p. 558, doi: 10.3390/jrfm14110558.
  54. Vasileiou, E., Samitas, A., Karagiannaki, M. and Dandu, J. (2021), ���Health risk and the efficient market hypothesis in the time of COVID-19���, International Review of Applied Economics, Vol. 35 No. 2, pp. 210-223, doi: 10.1080/02692171.2020.1864299.
  55. Yang, F., Li, X., Su, X., Xiao, T., Wang, Y., Hu, P., Wang, W., Guan, J., Tian, H. and Wang, W. (2021), ���A study on willingness and influencing factors to receive COVID-19 vaccination among Qingdao residents���, Human Vaccines and Immunotherapeutics, Vol. 17 No. 2, pp. 408-413, doi: 10.1080/21645515.2020.1817712.
  56. Yiu, M.S. and Tsang, A. (2021), ���Impact of COVID-19 on ASEAN5 stock markets���, Journal of the Asia Pacific Economy, Vol. 28 No. 4, pp. 1392-1405, doi: 10.1080/13547860.2021.1947550.
  57. Zaremba, A., Kizys, R., Aharon, D.Y. and Demir, E. (2020), ���Infected markets: novel coronavirus, government interventions, and stock return volatility around the globe���, Finance Research Letters, Vol. 35, 101597, doi: 10.1016/j.frl.2020.101597.

MeSH Term

India
Humans
COVID-19
Benchmarking
SARS-CoV-2
Delivery of Health Care
Pandemics
Models, Econometric

Word Cloud

Created with Highcharts 10.0.0healthcarevolatilityCOVID-19infrastructuremodelauthorcertaintyconditionalfirstindexpracticesreturnIndiastudyinvestmentpersistenceIndianGeneralizedAutoregressiveGARCH1quantifiescasereportS&PBSEHEALTHCAREIndia'sresearchsectorheteroskedasticityPURPOSE:poorvaccinedonorstraveledlongwaytriedfindsystemdueDESIGN/METHODOLOGY/APPROACH:UsingConditionalHeteroskedasticitychangevarianceusedtimeseriesanalyzeFINDINGS:foundevidencedecreaseinvestmentsrelatedFurthermoreestimationeconometricsuggestspresencelargedegreeORIGINALITY/VALUE:kinddiscussedAlsopre-post-COVID-19periodresponsebenchmarkpandemic:approachARCHB23G11autoregressiveHealthcareI10I11InvestmentVolatility

Similar Articles

Cited By