A Morphospace Exploration Using a General Model of Development Reveals a Basic Set of Morphologies for Early Animal Development and Evolution.

Hugo Cano-Fernández, Miguel Brun-Usan, Tazzio Tissot, Isaac Salazar-Ciudad
Author Information
  1. Hugo Cano-Fernández: Genomics, Bioinformatics and Evolution Group, Departament de Genètica I Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain. ORCID
  2. Miguel Brun-Usan: Departamento de Paleobiología, Center for the Integration of Paleobiology, Universidad Autónoma de Madrid, Madrid, Spain. ORCID
  3. Tazzio Tissot: Electronics and Computer Science Department, University of Southampton, Southampton, UK. ORCID
  4. Isaac Salazar-Ciudad: Genomics, Bioinformatics and Evolution Group, Departament de Genètica I Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain. ORCID

Abstract

What morphologies are more likely to appear during evolution is a central question in zoology. Here we offer a novel approach to this question based on first developmental principles. We assumed that morphogenesis results from the genetic regulation of cell properties and behaviors (adhesion, contraction, etc.). We used EmbryoMaker, a general model of development that can simulate any gene network regulating cell properties and behaviors, the mechanical interactions and signaling between cells and the morphologies arising from those. We created spherical initial conditions with anterior and dorsal territories. We performed simulations changing the cell properties and behaviors regulated in these territories to explore which morphologies may have been possible. Thus, we obtained a set of the most basic animal morphologies that can be developmentally possible assuming very simple induction and morphogenesis. Our simulations suggest that elongation, invagination, evagination, condensation and anisotropic growth are the morphogenetic transformations more likely to appear from changes in cell properties and behaviors. We also found some parallels between our simulations and the morphologies of simple animals, some early stages of animal development and fossils attributed to early animals.

Keywords

References

  1. Alberch, P. 1991. “From Genes to Phenotype: Dynamical Systems and Evolvability.” Genetica 84: 5–11.
  2. Burke, R. D., R. L. Myers, T. L. Sexton, and C. Jackson. 1991. “Cell Movements During the Initial Phase of Gastrulation in the Sea Urchin Embryo.” Developmental Biology 146: 542–557.
  3. Cano‐Fernández, H., T. Tissot, M. Brun‐Usan, and I. Salazar‐Ciudad. 2023. “On the Origins of Developmental Robustness: Modeling Buffering Mechanisms Against Cell‐Level Noise.” Development 150: dev201911.
  4. Cano‐Fernández, H., T. Tissot, M. Brun‐Usan, and I. Salazar‐Ciudad. 2024. “A Mathematical Model of Development Shows That Cell Division, Short‐Range Signaling and Self‐Activating Gene Networks Increase Developmental Noise While Long‐Range Signaling and Epithelial Stiffness Reduce It.” Scientific Journal (Under Review).
  5. Colizzi, E. S., R. M. Vroomans, and R. M. Merks. 2020. “Evolution of Multicellularity by Collective Integration of Spatial Information.” eLife 9: e56349.
  6. Davidson, L. A., M. A. R. Koehl, R. Keller, and G. F. Oster. 1995. “How Do Sea Urchins Invaginate? Using Biomechanics to Distinguish Between Mechanisms of Primary Invagination.” Development 121: 2005–2018.
  7. Evans, S. D., M. L. Droser, and J. G. Gehling. 2017. “Highly Regulated Growth and Development of the Ediacara Macrofossil Dickinsonia costata.” PLoS One 12: e0176874.
  8. Foty, R. A., and M. S. Steinberg. 2005. “The Differential Adhesion Hypothesis: A Direct Evaluation.” Developmental Biology 278: 255–263.
  9. Gilbert, S. F. 2019. Developmental Biology. Sunderland: Sinauer Associates, Inc.
  10. Hagolani, P. F., R. Zimm, M. Marin‐Riera, and I. Salazar‐Ciudad. 2019. “Cell Signaling Stabilizes Morphogenesis Against Noise.” Development 146: dev179309.
  11. Hoekzema, R. S., M. D. Brasier, F. S. Dunn, and A. G. Liu. 2017. “Quantitative Study of Developmental Biology Confirms Dickinsonia as a Metazoan.” Proceedings of the Royal Society B: Biological Sciences 284: 20171348.
  12. Hogeweg, P. 2000. “Evolving Mechanisms of Morphogenesis: On the Interplay Between Differential Adhesion and Cell Differentiation.” Journal of Theoretical Biology 203: 317–333.
  13. Huldtgren, T., J. A. Cunningham, C. Yin, et al. 2011. “Fossilized Nuclei and Germination Structures Identify Ediacaran “Animal Embryos” as Encysting Protists.” Science 334: 1696–1699.
  14. Japón, P., F. Jiménez‐Morales, and F. Casares. 2022. “Intercellular Communication and the Organization of Simple Multicellular Animals.” Cells & Development 169: 203726.
  15. Lecuit, T., and P.‐F. Lenne. 2007. “Cell Surface Mechanics and the Control of Cell Shape, Tissue Patterns and Morphogenesis.” Nature Reviews Molecular Cell Biology 8: 633–644.
  16. Mammoto, T., A. Mammoto, Y. Torisawa, et al. 2011. “Mechanochemical Control of Mesenchymal Condensation and Embryonic Tooth Organ Formation.” Developmental Cell 21: 758–769.
  17. Marin‐Riera, M., M. Brun‐Usan, R. Zimm, T. Välikangas, and I. Salazar‐Ciudad. 2015. “Computational Modeling of Development by Epithelia, Mesenchyme and Their Interactions: A Unified Model.” Bioinformatics 32: 219–225.
  18. Marin‐Riera, M., J. Moustakas‐Verho, Y. Savriama, J. Jernvall, and I. Salazar‐Ciudad. 2018. “Differential Tissue Growth and Cell Adhesion Alone Drive Early Tooth Morphogenesis: An Ex Vivo and in Silico Study.” PLoS Computational Biology 14: e1005981.
  19. Martin, A. C., M. Kaschube, and E. F. Wieschaus. 2009. “Pulsed Contractions of an Actin–Myosin Network Drive Apical Constriction.” Nature 457: 495–499.
  20. McGhee, G. R. 2011. Convergent Evolution: Limited Forms Most Beautiful. Cambridge MA: MIT Press.
  21. Moczydłowska, M., and P. Liu. 2022. “Ediacaran Algal Cysts From the Doushantuo Formation, South China.” Geological Magazine 159: 1050–1070.
  22. Monier, B., M. Gettings, G. Gay, et al. 2015. “Apico‐Basal Forces Exerted by Apoptotic Cells Drive Epithelium Folding.” Nature 518: 245–248.
  23. Mora Van Cauwelaert, E., J. A. Arias Del Angel, M. Benítez, and E. M. Azpeitia. 2015. “Development of Cell Differentiation in the Transition to Multicellularity: A Dynamical Modeling Approach.” Frontiers in Microbiology 6: 603.
  24. Newman, S. A. 1994. “Generic Physical Mechanisms of Tissue Morphogenesis: A Common Basis for Development and Evolution.” Journal of Evolutionary Biology 7: 467–488.
  25. Newman, S. A. 1996. “Sticky Fingers: Hox Genes and Cell Adhesion in Vertebrate Limb Development.” BioEssays 18: 171–174.
  26. Newman, S. A., and R. Bhat. 2008. “Dynamical Patterning Modules: Physico‐Genetic Determinants of Morphological Development and Evolution.” Physical Biology 5: 015008.
  27. Newman, S. A., and R. Bhat. 2009. “Dynamical Patterning Modules: A “Pattern Language” for Development and Evolution of Multicellular Form.” The International Journal of Developmental Biology 53: 693–705.
  28. Newman, S. A., G. Forgacs, and G. B. Muller. 2006. “Before Programs: The Physical Origination of Multicellular Forms.” The International Journal of Developmental Biology 50: 289–299.
  29. Newman, S. A., and G. B. Müller. 2000. “Epigenetic Mechanisms of Character Origination.” Journal of Experimental Zoology 288: 304–317.
  30. Pearl, E. J., J. Li, and J. B. A. Green. 2017. “Cellular Systems for Epithelial Invagination.” Philosophical Transactions of the Royal Society, B: Biological Sciences 372: 20150526.
  31. Salazar‐Ciudad, I. 2006. “On the Origins of Morphological Disparity and Its Diverse Developmental Bases.” BioEssays 28: 1112–1122.
  32. Salazar‐Ciudad, I. 2010. “Morphological Evolution and Embryonic Developmental Diversity in Metazoa.” Development 137: 531–539.
  33. Salazar‐Ciudad, I., J. Garcia‐Fernández, and R. V. Solé. 2000. “Gene Networks Capable of Pattern Formation: From Induction to Reaction–Diffusion.” Journal of Theoretical Biology 205: 587–603.
  34. Salazar‐Ciudad, I., J. Jernvall, and S. A. Newman. 2003. “Mechanisms of Pattern Formation in Development and Evolution.” Development 130: 2027–2037.
  35. Salazar‐Ciudad, I., and H. Cano‐Fernández. 2023. “Evo‐Devo Beyond Development: Generalizing Evo‐Devo to All Levels of the Phenotypic Evolution.” BioEssays 45: 2200205.
  36. Sherrard, K., F. Robin, P. Lemaire, and E. Munro. 2010. “Sequential Activation of Apical and Basolateral Contractility Drives Ascidian Endoderm Invagination.” Current Biology 20: 1499–1510.
  37. Slyusarev, G. S., N. I. Bondarenko, E. K. Skalon, A. K. Rappoport, D. Radchenko, and V. V. Starunov. 2022. “The Structure of the Muscular and Nervous Systems of the Orthonectid Rhopalura litoralis (Orthonectida) or What Parasitism Can Do to an Annelid.” Organisms Diversity & Evolution 22: 35–45.
  38. Slyusarev, G. S., E. K. Skalon, and V. V. Starunov. 2023. “Evolution of Orthonectida Body Plan.” Evolution & Development 26, no. 4: e12462.
  39. Steinberg, M. S. 1970. “Does Differential Adhesion Govern Self‐Assembly Processes in Histogenesis? Equilibrium Configurations and the Emergence of a Hierarchy Among Populations of Embryonic Cells.” Journal of Experimental Zoology 173: 395–433.
  40. Taylor, H. B., A. Khuong, Z. Wu, et al. 2017. “Cell Segregation and Border Sharpening by Eph Receptor–Ephrin‐Mediated Heterotypic Repulsion.” Journal of the Royal Society Interface 14: 20170338.
  41. Technau, U. 2020. “Gastrulation and Germ Layer Formation in the Sea Anemone Nematostella Vectensis and Other Cnidarians.” Mechanisms of Development 163: 103628.
  42. True, J. R., and E. S. Haag. 2001. “Developmental System Drift and Flexibility in Evolutionary Trajectories.” Evolution & Development 3: 109–119.
  43. Vroomans, R. M. A., and E. S. Colizzi. 2023. “Evolution of Selfish Multicellularity: Collective Organisation of Individual Spatio‐Temporal Regulatory Strategies.” BMC Ecology and Evolution 23: 35.
  44. Wang, Y., D. Stonehouse‐Smith, M. T. Cobourne, J. B. A. Green, and M. Seppala. 2022. “Cellular Mechanisms of Reverse Epithelial Curvature in Tissue Morphogenesis.” Frontiers in Cell and Developmental Biology 10: 1066399.
  45. Xiao, S., and A. H. Knoll. 2000. “Phosphatized Animal Embryos From the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China.” Journal of Paleontology 74: 767–788.
  46. Yin, Z., W. Sun, P. Liu, et al. 2022. “Diverse and Complex Developmental Mechanisms of Early Ediacaran Embryo‐Like Fossils From the Weng'an Biota, Southwest China.” Philosophical Transactions of the Royal Society, B: Biological Sciences 377: 20210032.
  47. Yin, Z., W. Sun, P. Liu, M. Zhu, and P. C. J. Donoghue. 2020. “Developmental Biology of Helicoforamina Reveals Holozoan Affinity, Cryptic Diversity, and Adaptation to Heterogeneous Environments in the Early Ediacaran Weng'an Biota (Doushantuo Formation, South China).” Science Advances 6: eabb0083.
  48. Yin, Z., K. Vargas, J. Cunningham, et al. 2019. “The Early Ediacaran Caveasphaera Foreshadows the Evolutionary Origin of Animal‐Like Embryology.” Current Biology 29: 4307–4314.e2.
  49. Yin, Z., M. Zhu, E. H. Davidson, D. J. Bottjer, F. Zhao, and P. Tafforeau. 2015. “Sponge Grade Body Fossil With Cellular Resolution Dating 60 Myr Before the Cambrian.” Proceedings of the National Academy of Sciences 112: E1453–E1460.
  50. Yin, Z., M. Zhu, P. Tafforeau, J. Chen, P. Liu, and G. Li. 2013. “Early Embryogenesis of Potential Bilaterian Animals With Polar Lobe Formation From the Ediacaran Weng'an Biota, South China.” Precambrian Research 225: 44–57.

Grants

  1. /The study was supported by the Spanish Ministry of Science and Innovation for funding (PID2021-122930NB-I00 and CNS2022-135397) to I.S.-C. and FPU19/01428 to H.C.-F. This work was also supported by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M) to the Centre de Recerca Matemàtica.

Word Cloud

Created with Highcharts 10.0.0morphologiescellpropertiesbehaviorsdevelopmentsimulationsanimalearlylikelyappearevolutionquestionmorphogenesiscanterritoriespossiblesimplemorphogeneticanimalsDevelopmentcentralzoologyoffernovelapproachbasedfirstdevelopmentalprinciplesassumedresultsgeneticregulationadhesioncontractionetcusedEmbryoMakergeneralmodelsimulategenenetworkregulatingmechanicalinteractionssignalingcellsarisingcreatedsphericalinitialconditionsanteriordorsalperformedchangingregulatedexploremayThusobtainedsetbasicdevelopmentallyassuminginductionsuggestelongationinvaginationevaginationcondensationanisotropicgrowthtransformationschangesalsofoundparallelsstagesfossilsattributedMorphospaceExplorationUsingGeneralModelRevealsBasicSetMorphologiesEarlyAnimalEvolutionmodelingtransformationmorphology

Similar Articles

Cited By

No available data.