The Gift of Time, How Do I Want to Spend It? Exploring Preferences for Time Allocation Among Women with and without a Breast Cancer Diagnosis.

Ni Gao, Mandy Ryan, Suzanne Robinson, Richard Norman
Author Information
  1. Ni Gao: Health Economics Research Unit, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland, UK. gao.ni@outlook.com. ORCID
  2. Mandy Ryan: Health Economics Research Unit, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
  3. Suzanne Robinson: Health Economics, School of Health and Social Development, Deakin University, Burwood, Victoria, Australia.
  4. Richard Norman: Health Systems and Health Economics, School of Public Health, Curtin University, Bentley, Perth, Australia.

Abstract

BACKGROUND: Women's preferences for time allocation reveal how they would like to prioritise market work, family life, and other competing activities. Whilst preferences may not always directly translate to behaviour, they are an important determinant of intention to act.
OBJECTIVE: We present the first study to apply a discrete choice experiment (DCE) to investigate time allocation preferences among women diagnosed with breast cancer and women without a cancer diagnosis.
METHODS: Time attributes were paid work, household work, caregiving, passive leisure and physical leisure. An income attribute was included to estimate the monetary value of time. The study took place in the UK and the DCE was completed by 191 women diagnosed with breast cancer and 347 women without a cancer diagnosis. Responses were analysed using a mixed logit model.
RESULTS: Women diagnosed with breast cancer have stronger positive preferences for daily activities compared to women without a cancer diagnosis. They require less compensation (not significant) for an additional hour of paid work (��5.58), household work (��7.92), and caregiving (��8.53). They are willing to pay more for an additional hour of passive leisure (��1.70, not significant) and physical leisure (��13.66, significant).
CONCLUSION: The heterogeneous preferences for time allocation among women have policy implications and are significant for welfare analysis.

References

  1. Bockstael NE, Strand IE, Hanemann WM. Time and the recreational demand model. Am J Agr Econ. 1987;69(2):293���302. [DOI: 10.2307/1242279]
  2. Aguiar M, Hurst E. The macroeconomics of time allocation. Handbook of macroeconomics. Elsevier; 2016. p. 203���53.
  3. Gimenez-Nadal JI, Sevilla A. Trends in time allocation: a cross-country analysis. Eur Econ Rev. 2012;56(6):1338���59. [DOI: 10.1016/j.euroecorev.2012.02.011]
  4. Sayer LC. Gender, time and inequality: trends in women���s and men���s paid work, unpaid work and free time. Soc Forces. 2005;84(1):285���303. [DOI: 10.1353/sof.2005.0126]
  5. Aguiar M, Hurst E. Measuring trends in leisure: the allocation of time over five decades. Q J Econ. 2007;122(3):969���1006. [DOI: 10.1162/qjec.122.3.969]
  6. Hakim C. (How) can social policy and fiscal policy recognise unpaid family work? Renewal. 2010;18(1/2):23.
  7. Becker GS. A theory of the allocation of time. Econ J. 1965;75:493���517. [DOI: 10.2307/2228949]
  8. Gronau R. Leisure, home production, and work-the theory of the allocation of time revisited. J Polit Econ. 1977;85(6):1099���123. [DOI: 10.1086/260629]
  9. Bhat CR, Koppelman FS. A retrospective and prospective survey of time-use research. Transportation. 1999;26(2):119���39. [DOI: 10.1023/A]
  10. Geerken M, Gove WR. At home and at work: the family���s allocation of labor. Berlin: Sage Publications, Inc; 1983.
  11. Golden L, Gebreselassie T. Overemployment mismatches: the preference for fewer work hours. Mon Labor Rev. 2007;130:18.
  12. Reynolds J. You can���t always get the hours you want: mismatches between actual and preferred work hours in the US. Soc Forces. 2003;81(4):1171���99. [DOI: 10.1353/sof.2003.0069]
  13. Farber HS. Is tomorrow another day? The labor supply of New York City cabdrivers. J Polit Econ. 2005;113(1):46���82. [DOI: 10.1086/426040]
  14. Schalembier B, Bleys B, Van Ootegem L, Verhofstadt E. How relative income affects work hours preferences. Appl Econ. 2019;51(51):5545���58. [DOI: 10.1080/00036846.2019.1613512]
  15. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50(2):179���211. [DOI: 10.1016/0749-5978(91)90020-T]
  16. Dahm PC, Glomb TM, Manchester CF, Leroy S. Work���family conflict and self-discrepant time allocation at work. J Appl Psychol. 2015;100(3):767. [PMID: 25664468]
  17. Near JP, Smith CA, Rice RW, Hunt RG. A comparison of work and nonwork predictors of life satisfaction. Acad Manag J. 1984;27(1):184���90. [DOI: 10.2307/255966]
  18. Neulinger J. Leisure lack and the quality of life: the broadening scope of the leisure professional. Leis Stud. 1982;1(1):53���63. [DOI: 10.1080/02614368200390051]
  19. Mullahy J, Robert SA. No time to lose? Time constraints and physical activity. National Bureau of Economic Research Working Paper 14513 2008.
  20. Gimenez-Nadal JI, Molina JA. Health inequality and the uses of time for workers in Europe: policy implications. IZA J Eur Labor Stud. 2016;5(1):2. [DOI: 10.1186/s40174-016-0055-4]
  21. Gimenez-Nadal JI, Molina JA. Health status and the allocation of time: cross-country evidence from Europe. Econ Model. 2015;46:188���203. [DOI: 10.1016/j.econmod.2014.12.034]
  22. Gimenez-Nadal JI, Ortega-Lapiedra R. Health status and time allocation in Spain. Appl Econ Lett. 2013;20(15):1435���9. [DOI: 10.1080/13504851.2013.818205]
  23. Podor M, Halliday TJ. Health status and the allocation of time. Health Econ. 2012;21(5):514���27. [PMID: 21387462]
  24. Leufstadius C, Eklund M. Time use among individuals with persistent mental illness: identifying risk factors for imbalance in daily activities. Scandinavian J Occup Ther. 2008;15(1):23���33. [DOI: 10.1080/11038120701253428]
  25. Lomax CL, Brown RG, Howard RJ. Measuring disability in patients with neurodegenerative disease using the ���Yesterday Interview.��� Int J Geriatr Psychiatry. 2004;19(11):1058���64. [PMID: 15481074]
  26. Pentland W, Harvey A, Smith T, Walker J. The impact of spinal cord injury on men���s time use. Spinal Cord. 1999;37(11):786���92. [PMID: 10578250]
  27. Shimitras L, Fossey E, Harvey C. Time use of people living with schizophrenia in a North London catchment area. Br J Occup Ther. 2003;66(2):46���54. [DOI: 10.1177/030802260306600202]
  28. Pag��n R. Time allocation of disabled individuals. Soc Sci Med. 2013;84:80���93. [PMID: 23517707]
  29. Du J, Yagihashi T. Health capital investment and time spent on health-related activities. Rev Econ Household. 2017;15(4):1215���48. [DOI: 10.1007/s11150-017-9378-9]
  30. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394���424. [DOI: 10.3322/caac.21492]
  31. Coughlin SS, Ekwueme DU. Breast cancer as a global health concern. Cancer Epidemiol. 2009;33(5):315���8. [PMID: 19896917]
  32. Gao N, Ryan M, Krucien N, Robinson S, Norman R. Paid work, household work, or leisure? Time allocation pathways among women following a cancer diagnosis. Soc Sci Med. 2020;246: 112776. [PMID: 31918348]
  33. Verbooy K, Hoefman R, van Exel J, Brouwer W. Time Is money: Investigating the value of leisure time and unpaid work. Value Health. 2018;21(12):1428���36. [PMID: 30502787]
  34. Mentzakis E, Ryan M, McNamee P. Using discrete choice experiments to value informal care tasks: exploring preference heterogeneity. Health Econ. 2011;20(8):930���44. [PMID: 20799343]
  35. Jara-D��az SR, Astroza S. Revealed willingness to pay for leisure: link between structural and microeconomic models of time use. Transp Res Rec. 2013;2382(1):75���82. [DOI: 10.3141/2382-09]
  36. Hamermesh DS. What���s to know about time use? J Econ Surv. 2016;30(1):198���203. [DOI: 10.1111/joes.12107]
  37. Bridges JF, Hauber AB, Marshall D, Lloyd A, Prosser LA, Regier DA, et al. Conjoint analysis applications in health���a checklist: a report of the ISPOR good research practices for conjoint analysis task force. Value Health. 2011;14(4):403���13. [PMID: 21669364]
  38. Office for National Statistics. 2019; Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/bulletins/householddisposableincomeandinequality/financialyearending2019
  39. Jara-D��az S, Rosales-Salas J. Beyond transport time: a review of time use modeling. Transp Res Part A. 2017;97:209���30.
  40. Becker GSJTej. A theory of the allocation of time. 1965:493���517.
  41. Gershuny J. Time-use surveys and the measurement of national well-being. Centre for Time Use Research, University of Oxford, Swansea, UK, Office for National Statistics. 2011.
  42. Scott A, Witt J, Humphreys J, Joyce C, Kalb G, Jeon S-H, et al. Getting doctors into the bush: general practitioners��� preferences for rural location. Soc Sci Med. 2013;96:33���44. [PMID: 24034949]
  43. Marshall DA, Johnson FR, Phillips KA, Marshall JK, Thabane L, Kulin NA. Measuring patient preferences for colorectal cancer screening using a choice-format survey. Value Health. 2007;10(5):415���30. [PMID: 17888107]
  44. Hensher DA, Greene WH. The mixed logit model: the state of practice. Transportation. 2003;30(2):133���76. [DOI: 10.1023/A]
  45. Hole AR, Kolstad JR. Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment. Empir Econ. 2012;42(2):445���69. [DOI: 10.1007/s00181-011-0500-1]
  46. Train KE. Discrete choice methods with simulation. Cambridge University Press; 2009.
  47. Sicsic J, Krucien N, Franc C. What are GPs��� preferences for financial and non-financial incentives in cancer screening? Evidence for breast, cervical, and colorectal cancers. Soc Sci Med. 2016;167:116���27. [PMID: 27619755]
  48. de Bekker-Grob EW, Rose JM, Bliemer MC. A closer look at decision and analyst error by including nonlinearities in discrete choice models: implications on willingness-to-pay estimates derived from discrete choice data in healthcare. Pharmacoeconomics. 2013;31(12):1169���83. [PMID: 24178372]
  49. Hole AR. A comparison of approaches to estimating confidence intervals for willingness to pay measures. Health Econ. 2007;16(8):827���40. [PMID: 17238222]
  50. Bradley CJ, Bednarek HL, Neumark D. Breast cancer survival, work, and earnings. J Health Econ. 2002;21(5):757���79. [PMID: 12349881]
  51. Bradley CJ, Neumark D, Luo Z, Schenk M. Employment and cancer: findings from a longitudinal study of breast and prostate cancer survivors. Cancer Invest. 2007;25(1):47���54. [PMID: 17364557]
  52. Candon D. The effects of cancer on older workers in the English labour market. Econ Hum Biol. 2015;18:74���84 (2015-09-01). [PMID: 25965970]
  53. Jeon SH. The long-term effects of cancer on employment and earnings. Health Economics; 2016.
  54. Moran JR, Short PF, Hollenbeak CS. Long-term employment effects of surviving cancer. J Health Econ. 2011;30(3):505���14. [PMID: 21429606]
  55. Moran JR, Short PF. Does cancer reduce labor market entry? Evidence for prime-age females. Med Care Res Rev. 2014;71(3):224���42. [PMID: 24243912]
  56. Trevisan E, Zantomio F. The impact of acute health shocks on the labour supply of older workers: evidence from sixteen European countries. Labour Econ. 2016;43:171���85. [DOI: 10.1016/j.labeco.2016.04.002]
  57. Cheng TC, Kim S, Petrie D. Health shocks, health and labor market dynamics, and the socioeconomic-health gradient in older Singaporeans. Soc Sci Med. 2024;348: 116796. [PMID: 38603917]
  58. De Meijer C, Brouwer W, Koopmanschap M, van den Berg B, van Exel J. The value of informal care���a further investigation of the feasibility of contingent valuation in informal caregivers. Health Econ. 2010;19(7):755���71. [PMID: 19548326]
  59. Gustavsson A, J��nsson L, McShane R, Boada M, Wimo A, Zbrozek AS. Willingness-to-pay for reductions in care need: estimating the value of informal care in Alzheimer���s disease. Int J Geriatr Psychiatry. 2010;25(6):622���32. [PMID: 19750558]
  60. Larson DM, Shaikh SL, Layton D. Revealing preferences for leisure time from stated preference data. Am J Agr Econ. 2004;86(2):307���20. [DOI: 10.1111/j.0092-5853.2004.00580.x]
  61. Van Den Berg B, Al M, Van Exel J, Koopmanschap M, Brouwer W. Economic valuation of informal care: conjoint analysis applied in a heterogeneous population of informal caregivers. Value Health. 2008;11(7):1041���50. [PMID: 18489514]
  62. Grossman M. On the concept of health capital and the demand for health. J Polit Econ. 1972;80(2):223���55. [DOI: 10.1086/259880]
  63. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. Oxford University Press; 2015.
  64. Krol M, Papenburg J, Tan SS, Brouwer W, Hakkaart L. A noticeable difference? Productivity costs related to paid and unpaid work in economic evaluations on expensive drugs. Eur J Health Econ. 2016;17(4):391���402. [PMID: 25876834]
  65. Krol M, Brouwer W. Unpaid work in health economic evaluations. Soc Sci Med. 2015;144:127���37. [PMID: 26421997]
  66. Stone PW, Chapman RH, Sandberg EA, Liljas B, Neumann PJ. Measuring costs in cost-utility analyses: variations in the literature. Int J Technol Assess Health Care. 2000;16(1):111���24. [PMID: 10815358]
  67. Krol M, Brouwer W. How to estimate productivity costs in economic evaluations. Pharmacoeconomics. 2014;32:335���44. [PMID: 24504850]
  68. Zhang W, Bansback N, Anis AH. Measuring and valuing productivity loss due to poor health: a critical review. Soc Sci Med. 2011;72(2):185���92. [PMID: 21146909]
  69. Tranmer JE, Guerriere DN, Ungar WJ, Coyte PC. Valuing patient and caregiver time: a review of the literature. Pharmacoeconomics. 2005;23:449���59. [PMID: 15896097]
  70. Andronis L, Maredza M, Petrou S. Measuring, valuing and including forgone childhood education and leisure time costs in economic evaluation: methods, challenges and the way forward. Soc Sci Med. 2019;237: 112475. [PMID: 31408769]
  71. Brouwer WB, Rutten FF. The missing link: on the line between C and E. Health Econ. 2003;12(8):629���36. [PMID: 12898661]
  72. Sen A. Personal utilities and public judgements: or what���s wrong with welfare economics. Econ J. 1979;89:537���58. [DOI: 10.2307/2231867]
  73. Sen A. Commodities and capabilities. OUP Catalogue; 1999.

MeSH Term

Humans
Female
Breast Neoplasms
Middle Aged
Adult
Patient Preference
United Kingdom
Choice Behavior
Aged
Leisure Activities
Surveys and Questionnaires
Time Factors

Word Cloud

Created with Highcharts 10.0.0womencancerpreferencesworktimewithoutleisuresignificantallocationdiagnosedbreastdiagnosisTimeactivitiesstudyDCEamongpaidhouseholdcaregivingpassivephysicalWomenadditionalhourBACKGROUND:Women'sreveallikeprioritisemarketfamilylifecompetingWhilstmayalwaysdirectlytranslatebehaviourimportantdeterminantintentionactOBJECTIVE:presentfirstapplydiscretechoiceexperimentinvestigateMETHODS:attributesincomeattributeincludedestimatemonetaryvaluetookplaceUKcompleted191347ResponsesanalysedusingmixedlogitmodelRESULTS:strongerpositivedailycomparedrequirelesscompensation��558��792��853willingpay��170��1366CONCLUSION:heterogeneouspolicyimplicationswelfareanalysisGiftWantSpendIt?ExploringPreferencesAllocationAmongBreastCancerDiagnosis

Similar Articles

Cited By