Single-nucleotide polymorphism analysis accurately predicts multiple impairments in hippocampal activity and memory performance in a murine model of idiopathic autism.
Isabel Bar��n-Mendoza, Luis A M��rquez, Aliesha Gonz��lez Arenas, Jessica Guzm��n-Condado, Vladimir A Mart��nez-Rojas, Johaly Anguiano-Buenfil, Montserrat Mej��a-Hern��ndez, Jorge Luis Almaz��n, Leonor P��rez-Mart��nez, Gustavo Pedraza-Alva, Emilio J Galv��n, Ang��lica Zepeda
Author Information
Isabel Bar��n-Mendoza: Departamento de Medicina Gen��mica y Toxicolog��a Ambiental, Instituto de Investigaciones Biom��dicas, Universidad Nacional Aut��noma de M��xico, 04510, Mexico City, Mexico.
Luis A M��rquez: Departamento de Farmacobiolog��a, CINVESTAV Unidad Sur CdMx, Mexico City, Mexico.
Aliesha Gonz��lez Arenas: Departamento de Medicina Gen��mica y Toxicolog��a Ambiental, Instituto de Investigaciones Biom��dicas, Universidad Nacional Aut��noma de M��xico, 04510, Mexico City, Mexico.
Jessica Guzm��n-Condado: Departamento de Medicina Gen��mica y Toxicolog��a Ambiental, Instituto de Investigaciones Biom��dicas, Universidad Nacional Aut��noma de M��xico, 04510, Mexico City, Mexico.
Vladimir A Mart��nez-Rojas: Departamento de Farmacobiolog��a, CINVESTAV Unidad Sur CdMx, Mexico City, Mexico.
Johaly Anguiano-Buenfil: Departamento de Farmacobiolog��a, CINVESTAV Unidad Sur CdMx, Mexico City, Mexico.
Montserrat Mej��a-Hern��ndez: Departamento de Medicina Gen��mica y Toxicolog��a Ambiental, Instituto de Investigaciones Biom��dicas, Universidad Nacional Aut��noma de M��xico, 04510, Mexico City, Mexico.
Jorge Luis Almaz��n: Laboratorio de Neuroinmunobiolog��a, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnolog��a UNAM, Cuernavaca, Morelos, 62210, Mexico City, Mexico.
Leonor P��rez-Mart��nez: Laboratorio de Neuroinmunobiolog��a, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnolog��a UNAM, Cuernavaca, Morelos, 62210, Mexico City, Mexico.
Gustavo Pedraza-Alva: Laboratorio de Neuroinmunobiolog��a, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnolog��a UNAM, Cuernavaca, Morelos, 62210, Mexico City, Mexico.
Emilio J Galv��n: Departamento de Farmacobiolog��a, CINVESTAV Unidad Sur CdMx, Mexico City, Mexico. ejgalvan@cinvestav.mx.
Ang��lica Zepeda: Departamento de Medicina Gen��mica y Toxicolog��a Ambiental, Instituto de Investigaciones Biom��dicas, Universidad Nacional Aut��noma de M��xico, 04510, Mexico City, Mexico. azepeda@iibiomedicas.unam.mx.
Autism spectrum disorder (ASD) comprises alterations in brain anatomy and physiology that ultimately affect information processing and behavior. In most cases, autism is considered idiopathic, involving alterations in numerous genes whose functions are not extensively documented. We evaluated the C58/J mouse strain as an idiopathic model of ASD, emphasizing synaptic transmission as the basis of information processing. Through in silico analysis, we found that the C58/J strain carries single nucleotide polymorphisms (SNPs) compared to the C57BL/6J control strain related to synaptic structure and LTP induction. These SNPs have human orthologs previously associated with ASD. We then assessed chemical potentiation (cLTP) in synaptosomes, the electrophysiological properties of hippocampal CA3 cells, and the induction of LTP in ex-vivo slices. An increased proportion of synaptosomes expressing the GluA1 subunit of AMPA receptor and Nrx1�� in the membrane was found in the C57BL/6J control strain, but not in C58/J mice, after cLTP induction. Additionally, several electrophysiological properties of CA3 pyramidal cells and hippocampal communication were altered. Behaviorally, C58/J mice exhibited hyperactivity and subtle memory changes. Our results demonstrate that an idiopathic model of ASD exhibits alterations in hippocampal physiology from the cellular to the circuitry and behavioral levels.
American Psychiatric Association. Diagnostic And Statistical Manual Of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR). (American Psychiatric Association Publishing, 2022). https://doi.org/10.1176/appi.books.9780890425787 .
Willsey, H. R., Willsey, A. J., Wang, B. & State, M. W. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat. Rev. Neurosci. 23, 323���341 (2022).
[PMID: 35440779]
Griesi-Oliveira, K. et al. Transcriptome of iPSC-derived neuronal cells reveals a module of co-expressed genes consistently associated with autism spectrum disorder. Mol. Psychiatry 26, 1589���1605 (2021).
[PMID: 32060413]
Liu, X. et al. Idiopathic autism: Cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol. Neurobiol. 54, 4507���4523 (2017).
[PMID: 27356918]
Cheng, P., Qiu, Z. & Du, Y. Potassium channels and autism spectrum disorder: An overview. Int. J. Dev. Neurosci. 81, 479���491 (2021).
[PMID: 34008235]
Long, S. et al. The clinical and genetic features of co-occurring epilepsy and autism spectrum disorder in chinese children. Front. Neurol. 10, 505 (2019).
[PMID: 31139143]
Bozdagi, O. et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism 1, 1���15 (2010).
[DOI: 10.1186/2040-2392-1-15]
Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261���265 (2012).
[PMID: 22699620]
Prieto, M. et al. Missense mutation of Fmr1 results in impaired AMPAR-mediated plasticity and socio-cognitive deficits in mice. Nat. Commun. 12, 1557 (2021).
[PMID: 33692361]
Li, W., Xu, X. & Pozzo-Miller, L. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors. Proc. Natl. Acad. Sci. USA 113, E1575���E1584 (2016).
[PMID: 26929363]
Mohammadkhani, R. et al. Impairment in social interaction and hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in a prenatal valproic acid-induced rat model of autism. Brain Commun. 4, fcac221 (2022).
[PMID: 36092302]
Jaramillo, T. C. et al. Altered striatal synaptic function and abnormal behaviour in Shank3 exon4-9 deletion mouse model of autism. Autism Res. 9, 350���375 (2016).
[PMID: 26559786]
Martinez, L. A. & Tejada-Simon, M. V. Pharmacological rescue of hippocampal fear learning deficits in fragile X syndrome. Mol. Neurobiol. 55, 5951���5961 (2018).
[PMID: 29128904]
Pu��cian, A. et al. A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front. Behav. Neurosci. 8, 140 (2014).
[PMID: 24808839]
Banker, S. M., Gu, X., Schiller, D. & Foss-Feig, J. H. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 44, 793���807 (2021).
[PMID: 34521563]
Cooper, R. A. et al. Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism. Cereb. Cortex 27, 888���902 (2017).
[PMID: 28057726]
Hogeveen, J., Krug, M. K., Geddert, R. M., Ragland, J. D. & Solomon, M. Compensatory hippocampal recruitment supports preserved episodic memory in autism spectrum disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 97���109 (2020).
[PMID: 31676207]
Lind, S. E., Williams, D. M., Raber, J., Peel, A. & Bowler, D. M. Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: Exploring relations with theory of mind, episodic memory, and episodic future thinking. J. Abnorm. Psychol. 122, 1189 (2013).
[PMID: 24364620]
Chung, L., Bey, A. L. & Jiang, Y.-H. Synaptic plasticity in mouse models of autism spectrum disorders. Korean J. Physiol. Pharmacol. 16, 369���378 (2012).
[PMID: 23269898]
Nicolini, C. & Fahnestock, M. The valproic acid-induced rodent model of autism. Exp. Neurol. 299, 217���227 (2018).
[PMID: 28472621]
Bar��n-Mendoza, I. et al. Altered hippocampal neurogenesis in a mouse model of autism revealed by genetic polymorphisms and by atypical development of newborn neurons. Sci. Rep. 14, 4608 (2024).
[PMID: 38409172]
Bar��n-Mendoza, I. et al. Changes in the number and morphology of dendritic spines in the hippocampus and prefrontal Cortex of the C58/J mouse model of autism. Front. Cell. Neurosci. 15, 726501 (2021).
[PMID: 34616277]
Bar��n-Mendoza, I. et al. Dendritic complexity in prefrontal cortex and hippocampus of the autistic-like mice C58/J. Neurosci. Lett. 703, 149���155 (2019).
[PMID: 30885632]
Duarte-Campos, J. F. et al. Changes in neuroinflammatory markers and microglial density in the hippocampus and prefrontal cortex of the C58/J mouse model of autism. Eur. J. Neurosci. 59, 154���173 (2024).
[PMID: 38057955]
Wilkes, B. J., Bass, C., Korah, H., Febo, M. & Lewis, M. H. Volumetric magnetic resonance and diffusion tensor imaging of C58/J mice: Neural correlates of repetitive behavior. Brain Imaging Behav. 14, 2084���2096 (2020).
[PMID: 31342238]
Bogue, M. A. et al. Mouse Phenome Database: Towards a more FAIR-compliant and TRUST-worthy data repository and tool suite for phenotypes and genotypes. Nucleic Acids Res. 51, D1067���D1074 (2023).
[PMID: 36330959]
Bogue, M. A. et al. Mouse Phenome Database: A data repository and analysis suite for curated primary mouse phenotype data. Nucleic Acids Res. 48, D716���D723 (2020).
[PMID: 31696236]
Wellcome Trust Sanger Institute. Sanger SNP and indel data, 89+ million locations, 37 inbred strains of mice. MPD:Sanger4. Mouse Phenome Database web resource (RRID:SCR_003212), The Jackson Laboratory, Bar Harbor, Maine USA https://phenome.jax.org (2017).
Sorokina, O., Sorokin, A. & Armstrong, J. D. Synaptome.db: A bioconductor package for synaptic proteomics data. Bioinforma. Adv. 2, vbac086 (2022).
[DOI: 10.1093/bioadv/vbac086]
Simons Foundation Autism Research Initiative. SFARI Gene. Database Human gene https://gene.sfari.org/database/human-gene/ (2024).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27���30 (2000).
[PMID: 10592173]
Bliim, N. et al. Early transcriptome changes in response to chemical long-term potentiation induced via activation of synaptic NMDA receptors in mouse hippocampal neurons. Genomics 111, 1676���1686 (2019).
[PMID: 30465913]
Seal, R. L. et al. Genenames.org: The HGNC resources in 2023. Nucleic Acids Res. 51, D1003���D1009 (2023).
[PMID: 36243972]
Szklarczyk, D. et al. The STRING database in 2021: Customizable protein���protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605���D612 (2021).
[PMID: 33237311]
Prieto, G. A. et al. Pharmacological rescue of long-term potentiation in Alzheimer diseased synapses. J. Neurosci. 37, 1197���1212 (2017).
[PMID: 27986924]
Prieto, G. A. et al. Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1�� in the aged hippocampus. Proc. Natl. Acad. Sci. USA 112, E5078���E5087 (2015).
[PMID: 26305968]
Kim, C. S. & Johnston, D. A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus. J. Neurophysiol. 113, 2511���2523 (2015).
[PMID: 25652929]
M��rquez, L. A., Griego, E., L��pez Rubalcava, C. & Galv��n, E. J. NMDA receptor activity during postnatal development determines intrinsic excitability and mossy fiber long-term potentiation of CA3 pyramidal cells. Hippocampus 33, 906���921 (2023).
[PMID: 36938755]
Griego, E. et al. Activation of D1/D5 receptors ameliorates decreased intrinsic excitability of hippocampal neurons induced by neonatal blockade of N-methyl-d-aspartate receptors. Br. J. Pharmacol. 179, 1695���1715 (2022).
[PMID: 34791647]
Simkin, D. et al. Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-type K+ channel function and expression. J. Neurosci. 35, 13206���13218 (2015).
[PMID: 26400949]
Villanueva-Castillo, C., Tecuatl, C., Herrera-L��pez, G. & Galv��n, E. J. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol. Aging 49, 119���137 (2017).
[PMID: 27794263]
Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 13304���13309 (1996).
[PMID: 8917586]
Harris, E. W. & Cotman, C. W. Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci. Lett. 70, 132���137 (1986).
[PMID: 3022192]
Ryan, B. C., Young, N. B., Crawley, J. N., Bodfish, J. W. & Moy, S. S. Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav. Brain Res. 208, 178���188 (2010).
[PMID: 19941908]
Antunes, M. & Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93���110 (2012).
[PMID: 22160349]
Curzon, P., Rustay, N. R. & Browman, K. E. Cued and contextual fear conditioning for rodents (2011).
Russell, E. S. Origins and history of mouse inbred strains: Contributions of Clarence Cook Little. Orig. inbred mice 33���43 (1978).
Staats, J. Standardized nomenclature for inbred strains of mice: Fifth listing. Cancer Res. 32, 1609���1646 (1972).
[PMID: 5044129]
Brumback, A. C. et al. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol. Psychiatry 23, 2078���2089 (2018).
[PMID: 29112191]
Eadie, B. D., Cushman, J., Kannangara, T. S., Fanselow, M. S. & Christie, B. R. NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1 knockout mice. Hippocampus 22, 241���254 (2012).
[PMID: 21049485]
Etherton, M. R., Tabuchi, K., Sharma, M., Ko, J. & S��dhof, T. C. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J. 30, 2908���2919 (2011).
[PMID: 21642956]
Guglielmi, L. et al. Update on the implication of potassium channels in autism: K+ channelautism spectrum disorder. Front. Cell. Neurosci. 9, 34 (2015).
[PMID: 25784856]
Zhang, Z., Miteva, M. A., Wang, L. & Alexov, E. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012, 1���15 (2012).
[DOI: 10.1155/2012/125321]
Booth, C. A., Brown, J. T. & Randall, A. D. Neurophysiological modification of CA 1 pyramidal neurons in a transgenic mouse expressing a truncated form of disrupted-in-schizophrenia 1. Eur. J. Neurosci. 39, 1074���1090 (2014).
[PMID: 24712988]
Takei, Y., Kikkawa, Y. S., Atapour, N., Hensch, T. K. & Hirokawa, N. Defects in synaptic plasticity, reduced NMDA-receptor transport, and instability of postsynaptic density proteins in mice lacking microtubule-associated protein 1A. J. Neurosci. 35, 15539���15554 (2015).
[PMID: 26609151]
Holz, R. W. & Fisher, S. K. Synaptic transmission and cellular signaling: An overview. Basic Neurochem. 235���257 (2012).
Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551���563 (2015).
[PMID: 26289574]
Kile, K. B., Tian, N. & Durand, D. M. Scn2a sodium channel mutation results in hyperexcitability in the hippocampus in vitro. Epilepsia 49, 488���499 (2008).
[PMID: 18031550]
Weigel, B. et al. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Mol. Psychiatry 28, 2122���2135 (2023).
[PMID: 36782060]
Zaslavsky, K. et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 22, 556���564 (2019).
[PMID: 30911184]
Sun, C. et al. Association study between inwardly rectifying potassium channels 2.1 and 4.1 and autism spectrum disorders. Life Sci. 213, 183���189 (2018).
[PMID: 30304693]
Ordemann, G. J., Apgar, C. J., Chitwood, R. A. & Brager, D. H. Altered A-type potassium channel function impairs dendritic spike initiation and temporoammonic long-term potentiation in Fragile X syndrome. J. Neurosci. 41, 5947���5962 (2021).
[PMID: 34083256]
Yeckel, M. F., Kapur, A. & Johnston, D. Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat. Neurosci. 2, 625���633 (1999).
[PMID: 10404192]
Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619���1624 (1990).
[PMID: 2114039]
Eltokhi, A. et al. Imbalanced post-and extrasynaptic SHANK2A functions during development affect social behavior in SHANK2-mediated neuropsychiatric disorders. Mol. Psychiatry 26, 6482���6504 (2021).
[PMID: 34021263]
Vaags, A. K. et al. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am. J. Hum. Genet. 90, 133���141 (2012).
[PMID: 22209245]
Bencsik, N. et al. Dendritic spine morphology and memory formation depend on postsynaptic Caskin proteins. Sci. Rep. 9, 16843 (2019).
[PMID: 31727973]
Ha, H. T. T. et al. Shank and zinc mediate an AMPA receptor subunit switch in developing neurons. Front. Mol. Neurosci. 11, 405 (2018).
[PMID: 30524232]
Koumoundourou, A. et al. Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3 (25b+) pathway. Elife 12, RP89854 (2024).
[PMID: 38358390]
Guntupalli, S. et al. Ubiquitination of the GluA1 subunit of AMPA receptors is required for synaptic plasticity, memory, and cognitive flexibility. J. Neurosci. 43, 5448���5457 (2023).
[PMID: 37419688]
Mart��n-de-Saavedra, M. D. et al. Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca2+ homeostasis and network synchrony via PMCA2/ATP2B2. Neuron 110, 627���643 (2022).
[PMID: 34921780]
Ho, M.T.-W. et al. Developmental expression of Ca2+-Permeable AMPA receptors underlies depolarization-induced long-term depression at mossy Fiber���CA3 pyramid synapses. J. Neurosci. 27, 11651���11662 (2007).
[PMID: 17959808]
Kilonzo, K. et al. Distinct contributions of GluA1-containing AMPA receptors of different hippocampal subfields to salience processing, memory and impulse control. Transl. Psychiatry 12, 102 (2022).
[PMID: 35288531]
Jerman, T., Kesner, R. P. & Hunsaker, M. R. Disconnection analysis of CA3 and DG in mediating encoding but not retrieval in a spatial maze learning task. Learn. Mem. 13, 458���464 (2006).
[PMID: 16882862]
Tan, J.-W. et al. Neurotrophin-3 from the dentate gyrus supports postsynaptic sites of mossy fiber-CA3 synapses and hippocampus-dependent cognitive functions. Mol. Psychiatry 97, 1137 (2024).
Clarke, J. R., Cammarota, M., Gruart, A., Izquierdo, I. & Delgado-Garc��a, J. M. Plastic modifications induced by object recognition memory processing. Proc. Natl. Acad. Sci. USA 107, 2652���2657 (2010).
[PMID: 20133798]
Larkin, M. C., Lykken, C., Tye, L. D., Wickelgren, J. G. & Frank, L. M. Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task. Hippocampus 24, 773���783 (2014).
[PMID: 24596296]
S��nchez-Rodr��guez, I. et al. Recognition memory induces natural LTP-like hippocampal synaptic excitation and inhibition. Int. J. Mol. Sci. 23, 10806 (2022).
[PMID: 36142727]
Denninger, J. K., Smith, B. M. & Kirby, E. D. Novel object recognition and object location behavioral testing in mice on a budget. JoVE 141, e58593 (2018).
Daumas, S., Ceccom, J., Halley, H., Franc��s, B. & Lassalle, J.-M. Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learn. Mem. 16, 504���507 (2009).
[PMID: 19638469]
Hunsaker, M. R., Tran, G. T. & Kesner, R. P. A behavioral analysis of the role of CA3 and CA1 subcortical efferents during classical fear conditioning. Behav. Neurosci. 123, 624 (2009).
[PMID: 19485569]
Remaud, J. et al. Anisomycin injection in area CA3 of the hippocampus impairs both short-term and long-term memories of contextual fear. Learn. Mem. 21, 311���315 (2014).
[PMID: 25171422]
R��mer, B. et al. Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I Co-regulation by activity. Front. Neurosci. 5, 107 (2011).
[PMID: 21991243]
Berkowicz, S. R. et al. Brinp1���/��� mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density. Mol. Autism 7, 1���20 (2016).
[DOI: 10.1186/s13229-016-0079-7]
Zamarbide, M., Oaks, A. W., Pond, H. L., Adelman, J. S. & Manzini, M. C. Loss of the intellectual disability and autism gene Cc2d1a and its homolog Cc2d1b differentially affect spatial memory, anxiety, and hyperactivity. Front. Genet. 9, 65 (2018).
[PMID: 29552027]
Du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).
[DOI: 10.1371/journal.pbio.3000411]
Raudvere, U. et al. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191���W198 (2019).
[PMID: 31066453]
Herrera-L��pez, G. & Galv��n, E. J. Modulation of hippocampal excitability via the hydroxycarboxylic acid receptor 1. Hippocampus 28, 557���567 (2018).
[PMID: 29704292]
Claiborne, B. J., Xiang, Z. & Brown, T. H. Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus 3, 115���121 (1993).
[PMID: 8353597]
Kraeuter, A.-K., Guest, P. C. & Sarnyai, Z. The open field test for measuring locomotor activity and anxiety-like behavior. Pre-clinical Model. Tech. Protoc. 99���103 (2019).