Advancing forest carbon projections requires improved convergence between ecological and economic models.

Madisen R Fuller, Manaswini Ganjam, Justin S Baker, Robert C Abt
Author Information
  1. Madisen R Fuller: North Carolina State University, Raleigh, NC, USA. mrfulle2@ncsu.edu. ORCID
  2. Manaswini Ganjam: North Carolina State University, Raleigh, NC, USA. ORCID
  3. Justin S Baker: North Carolina State University, Raleigh, NC, USA. ORCID
  4. Robert C Abt: North Carolina State University, Raleigh, NC, USA. ORCID

Abstract

Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.g., with ecological and economic modeling communities typically operating in silos or through soft model linkages through input-output parametric relationships. Recent disciplinary divides between economic and ecological research communities confound policy guidance on levers to increase forest carbon sinks and enhance ecosystem resilience to global change. This paper reviews and summarizes the expansive literature on forest carbon modeling within economic and ecological disciplines, discusses the benefits and limitations of commonly used models, and proposes a convergence approach to better integrating ecological and economic systems frameworks. More specifically, we highlight the critical feedback loops that exist when economic and ecological carbon models operate independently and discuss the benefits of a more integrated approach. We then describe an iterative approach that involves the sharing of methodology, perspectives, and data between the regimented model types. An integrated approach can reduce the limitations or disciplinary bias of forest carbon models by exploiting and merging their relative strengths.

References

  1. Carbon Balance Manag. 2007 Apr 26;2:4 [PMID: 17459169]
  2. Resour Energy Econ. 2018 Aug;53:198-219 [PMID: 30245551]
  3. Anthropocene. 2023;42:100386 [PMID: 39434981]
  4. Nat Commun. 2022 Sep 19;13(1):5490 [PMID: 36123337]
  5. Sci Rep. 2015 Nov 12;5:16518 [PMID: 26558439]
  6. BMC Bioinformatics. 2005 Jun 20;6:155 [PMID: 15967022]
  7. Science. 1969 Apr 18;164(3877):262-70 [PMID: 5776636]
  8. Glob Chang Biol. 2018 Jan;24(1):35-54 [PMID: 28921829]
  9. For Policy Econ. 2017 Nov 25;87:35-48 [PMID: 32280299]
  10. Nature. 2023 Aug;620(7972):110-115 [PMID: 37407827]
  11. Carbon Balance Manag. 2018 May 17;13(1):8 [PMID: 29774443]
  12. J For Econ. 2022 Feb 1;37(1):127-161 [PMID: 37942211]
  13. Environ Sci Technol. 2021 Nov 2;55(21):14806-14816 [PMID: 34652143]
  14. Ecol Appl. 1991 Nov;1(4):399-429 [PMID: 27755669]
  15. Tree Physiol. 2005 Jul;25(7):939-51 [PMID: 15870060]
  16. Carbon Balance Manag. 2022 Jul 2;17(1):10 [PMID: 35779178]
  17. Sci Adv. 2020 Mar 25;6(13):eaay6792 [PMID: 32232153]
  18. Ecol Process. 2022;11(1):7 [PMID: 35127311]
  19. Glob Chang Biol. 2022 Mar;28(5):1884-1902 [PMID: 34854165]
  20. Glob Chang Biol. 2015 Dec;21(12):4548-60 [PMID: 26207729]
  21. Glob Environ Change. 2022 Aug;76:1-13 [PMID: 38024226]
  22. Carbon Balance Manag. 2021 Mar 30;16(1):9 [PMID: 33786694]
  23. For Policy Econ. 2022 Dec 28;147:1-17 [PMID: 36923688]
  24. Land Econ. 2018 Feb 1;94:97-113 [PMID: 32280147]
  25. Science. 2011 Aug 19;333(6045):988-93 [PMID: 21764754]
  26. Oecologia. 1992 Dec;92(4):463-474 [PMID: 28313216]
  27. Nat Commun. 2020 Dec 1;11(1):5946 [PMID: 33262324]
  28. Ecol Appl. 1992 Nov;2(4):376-386 [PMID: 27759268]
  29. Science. 2008 Jun 13;320(5882):1444-9 [PMID: 18556546]
  30. J For Econ. 2019;34(3-4):205-231 [PMID: 32280189]
  31. J For Econ. 2019;34(3-4):337-366 [PMID: 32161437]
  32. Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2776-2781 [PMID: 29483245]
  33. Carbon Balance Manag. 2023 Apr 16;18(1):7 [PMID: 37062006]
  34. Tree Physiol. 2005 Apr;25(4):413-24 [PMID: 15687090]
  35. Nat Clim Chang. 2017 Jun;7:395-402 [PMID: 28861124]
  36. New Phytol. 2014 May;202(3):803-822 [PMID: 24467623]

Word Cloud

Created with Highcharts 10.0.0carboneconomicforestecologicalmodelsapproachglobalpolicymodelingdisciplinaryclimatesystemscanchangeframeworkscommunitiesmodelbenefitslimitationsconvergenceintegratedForestspotentialcontributesignificantlyeffortsenhancedsequestrationstorageterrestrialwoodproductsProjectionssimulatechangesfuturefluxesdifferentenvironmentalconditionsinformlandownerspolicymakersbestutilizeforestsmitigatingHoweveroftendevelopedappliedhighlymanneregtypicallyoperatingsilossoftlinkagesinput-outputparametricrelationshipsRecentdividesresearchconfoundguidanceleversincreasesinksenhanceecosystemresiliencepaperreviewssummarizesexpansiveliteraturewithindisciplinesdiscussescommonlyusedproposesbetterintegratingspecificallyhighlightcriticalfeedbackloopsexistoperateindependentlydiscussdescribeiterativeinvolvessharingmethodologyperspectivesdataregimentedtypesreducebiasexploitingmergingrelativestrengthsAdvancingprojectionsrequiresimproved

Similar Articles

Cited By