nipalsMCIA: flexible multi-block dimensionality reduction in R via nonlinear iterative partial least squares.

Max Mattessich, Joaquin Reyna, Edel Aron, Ferhat Ay, Misha Kilmer, Steven H Kleinstein, Anna Konstorum
Author Information
  1. Max Mattessich: Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
  2. Joaquin Reyna: Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
  3. Edel Aron: Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA. ORCID
  4. Ferhat Ay: Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA. ORCID
  5. Misha Kilmer: Department of Mathematics, Tufts University, Medford, MA 02155, USA.
  6. Steven H Kleinstein: Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA. ORCID
  7. Anna Konstorum: Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA. ORCID

Abstract

SUMMARY: With the increased reliance on multi-omics data for bulk and single-cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Nonlinear Iterative Partial Least Squares. We applied nipalsMCIA to both bulk and single-cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.
AVAILABILITY AND IMPLEMENTATION: nipalsMCIA is available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html, and includes detailed documentation and application vignettes.

References

  1. Nat Methods. 2022 Jan;19(1):41-50 [PMID: 34949812]
  2. Brief Bioinform. 2016 Jul;17(4):628-41 [PMID: 26969681]
  3. Sci Data. 2019 Oct 31;6(1):251 [PMID: 31672978]
  4. Mol Cell Proteomics. 2019 Aug 9;18(8 suppl 1):S153-S168 [PMID: 31243065]
  5. Curr Atheroscler Rep. 2023 Feb;25(2):55-65 [PMID: 36595202]
  6. Nat Commun. 2021 Jan 5;12(1):124 [PMID: 33402734]
  7. Nat Biotechnol. 2017 May 9;35(5):406-409 [PMID: 28486464]
  8. Nat Rev Genet. 2018 May;19(5):299-310 [PMID: 29479082]
  9. BMC Bioinformatics. 2014 May 29;15:162 [PMID: 24884486]
  10. Psychometrika. 2017 May 23;: [PMID: 28536930]
  11. Nat Rev Cancer. 2006 Oct;6(10):813-23 [PMID: 16990858]
  12. Sci Immunol. 2022 Apr 15;7(70):eabl9165 [PMID: 35427179]
  13. Nucleic Acids Res. 2018 Jan 4;46(D1):D956-D963 [PMID: 29136207]

Grants

  1. U01 AI150753/NIAID NIH HHS
  2. UL1 TR001863/NCATS NIH HHS
  3. R21AI176204/NIH HHS

MeSH Term

Least-Squares Analysis
Software
Algorithms
Single-Cell Analysis
Humans
Cluster Analysis
Computational Biology

Word Cloud

Created with Highcharts 10.0.0nipalsMCIAdatabulksingle-cellfeaturedimensionalityreductionSUMMARY:increasedreliancemulti-omicsanalysesavailabilityrobustapproachesperformunsupervisedlearningclusteringvisualizationselectionimperativeintroduceimplementationmultipleco-inertiaanalysisMCIAjointsolvesobjectivefunctionusingextensionNonlinearIterativePartialLeastSquaresapplieddatasetsobservedsignificantspeed-upimplementationslargesamplesizeand/ordimensionAVAILABILITYANDIMPLEMENTATION:availableBioconductorpackagehttps://bioconductororg/packages/release/bioc/html/nipalsMCIAhtmlincludesdetaileddocumentationapplicationvignettesnipalsMCIA:flexiblemulti-blockRvianonlineariterativepartialleastsquares

Similar Articles

Cited By