Neural hyperscanning in caregiver-child dyads: A paradigm for studying the long-term effects of facilitated vs. disrupted attention on working memory and executive functioning in young children.

Maya L Rosen, Annabelle Li, Catherine A Mikkelsen, Richard N Aslin
Author Information
  1. Maya L Rosen: Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA.
  2. Annabelle Li: Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA.
  3. Catherine A Mikkelsen: Smith College, Program in Neuroscience, 44 College Lane, Northampton, MA 01073, USA.
  4. Richard N Aslin: Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA.

Abstract

Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive. When caregivers are under engaged, children do not have the proper scaffolding to know what to attend to in a complex environment. When parents are intrusive, they inadvertently disrupt the child's attention and direct learning to information that the parent deems important, but the child may find uninteresting or irrelevant. This disruption can impede the learning process even if the child's behavior does not appear to be negatively affected during the unfolding parent-child interaction. Understanding the moment-to-moment neural basis of these processes is critical to uncover the role that caregivers play in the development of attention and learning, which in turn impacts the development of working memory and executive function. Simultaneous brain recording, called hyperscanning, is a burgeoning method that measures brain synchrony across parent-child dyads when engaged in a shared task. In this opinion piece, we first review existing literature that highlights the important role caregivers play in guiding attention and learning in infants and toddlers and how these interactions contribute to the development of working memory and executive function in young children. Next, we review the existing literature using hyperscanning and dual eye tracking paradigms to uncover the patterning of interactions when caregivers guide attention in a manner that either matches the expectations of the child or over- or under-directs the child's attention. We provide best-practices for employing hyperscanning techniques to uncover how caregivers optimally engage infant and toddlers' attention in the moment, and how children's developing memory of these patterns of interaction build their executive function abilities, both with their caregivers and with other adults and children.

References

  1. Child Dev. 2020 Jul;91(4):e762-e779 [PMID: 31591711]
  2. Soc Cogn Affect Neurosci. 2021 Jan 18;16(1-2):93-102 [PMID: 32591781]
  3. Neurophotonics. 2021 Jan;8(1):012101 [PMID: 33442557]
  4. Br J Educ Psychol. 2017 Jun;87(2):241-254 [PMID: 28220477]
  5. Hum Brain Mapp. 2024 Apr;45(5):e26672 [PMID: 38549429]
  6. Brain Dev. 2020 Sep;42(8):555-563 [PMID: 32532641]
  7. Front Psychol. 2016 Dec 15;7:1902 [PMID: 28018253]
  8. Neuroimage. 2018 Sep;178:493-502 [PMID: 29807152]
  9. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2177-9 [PMID: 12606715]
  10. Clin Child Fam Psychol Rev. 2022 Mar;25(1):110-129 [PMID: 35195833]
  11. Bioinformatics. 2010 Sep 15;26(18):i517-23 [PMID: 20823316]
  12. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14425-30 [PMID: 20660768]
  13. Sci Rep. 2017 Aug 17;7(1):8684 [PMID: 28819162]
  14. Dev Cogn Neurosci. 2022 Apr;54:101104 [PMID: 35367895]
  15. Curr Biol. 2016 May 9;26(9):1235-40 [PMID: 27133869]
  16. Cortex. 2020 Mar;124:235-249 [PMID: 31927470]
  17. Neuropsychologia. 2019 Feb 18;124:117-124 [PMID: 30594570]
  18. Sensors (Basel). 2022 Aug 05;22(15): [PMID: 35957421]
  19. Neuroscience. 2019 Dec 1;422:202-211 [PMID: 31682954]
  20. Neuroimage. 2009 Mar;45(1 Suppl):S187-98 [PMID: 19084070]
  21. Child Dev. 2000 Mar-Apr;71(2):358-75 [PMID: 10834470]
  22. Eur J Neurosci. 2024 Mar;59(6):1386-1403 [PMID: 38155106]
  23. Front Integr Neurosci. 2022 Jul 13;16:896919 [PMID: 35910339]
  24. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:6151-6154 [PMID: 33019375]
  25. Proc Natl Acad Sci U S A. 2021 Mar 23;118(12): [PMID: 33727420]
  26. Infant Child Dev. 2017 Jan-Feb;26(1): [PMID: 28458616]
  27. Front Psychol. 2016 Mar 15;7:380 [PMID: 27014174]
  28. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13290-13295 [PMID: 29183980]
  29. Trends Cogn Sci. 2012 Dec;16(12):606-17 [PMID: 23141428]
  30. Prog Brain Res. 2020;254:1-24 [PMID: 32859283]
  31. New Dir Child Adolesc Dev. 2009 Spring;2009(123):17-34 [PMID: 19306272]
  32. Child Dev. 2019 Mar;90(2):593-609 [PMID: 28800148]
  33. Dev Psychol. 2012 Jan;48(1):271-81 [PMID: 21928877]
  34. Child Dev. 2010 Jan-Feb;81(1):326-39 [PMID: 20331670]
  35. Dev Cogn Neurosci. 2024 Feb;65:101321 [PMID: 38061133]
  36. Soc Personal Psychol Compass. 2022 Oct;16(10):e12707 [PMID: 36407123]
  37. Dev Sci. 2005 Jan;8(1):74-87 [PMID: 15647068]
  38. Dev Psychobiol. 2022 Mar;64(3):e22240 [PMID: 35312062]
  39. Child Dev. 2021 Jul;92(4):1325-1336 [PMID: 33484166]
  40. Child Dev. 2021 Jul;92(4):e565-e580 [PMID: 33426676]
  41. Dev Psychopathol. 2017 Dec;29(5):1777-1794 [PMID: 29162183]
  42. Front Hum Neurosci. 2020 Jun 03;14:201 [PMID: 32581746]
  43. Annu Rev Stat Appl. 2022 Mar;9(1):289-319 [PMID: 37840549]
  44. Soc Neurosci. 2023 Aug;18(4):232-244 [PMID: 37395457]
  45. Dev Psychol. 2023 Nov;59(11):1951-1961 [PMID: 37616120]
  46. Dev Psychobiol. 2022 Mar;64(3):e22221 [PMID: 35312051]
  47. J Can Chiropr Assoc. 2009 Mar;53(1):59-72 [PMID: 19421353]
  48. Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2122481120 [PMID: 37014853]
  49. Biology (Basel). 2023 Feb 10;12(2): [PMID: 36829560]
  50. Dev Cogn Neurosci. 2021 Apr;48:100937 [PMID: 33639519]
  51. Neuroimage. 2021 Dec 1;244:118599 [PMID: 34547452]
  52. Acta Psychol (Amst). 2021 Jan;212:103210 [PMID: 33202312]
  53. J Child Fam Stud. 2017;26(6):1723-1733 [PMID: 28572718]
  54. J Fam Psychol. 2021 Dec;35(8):1160-1170 [PMID: 33705178]
  55. Neuroimage. 2021 Feb 15;227:117672 [PMID: 33359349]
  56. Dev Psychol. 2014 Feb;50(2):554-65 [PMID: 23834294]
  57. Dev Psychopathol. 2020 Dec;32(5):1754-1777 [PMID: 33427185]
  58. Psychol Sci. 2020 Jan;31(1):6-17 [PMID: 31845827]
  59. Wiley Interdiscip Rev Cogn Sci. 2015 May-Jun;6(3):263-83 [PMID: 26263229]
  60. Soc Cogn Affect Neurosci. 2018 Sep 11;13(9):907-920 [PMID: 30137601]
  61. J Int Neuropsychol Soc. 2011 Jan;17(1):120-32 [PMID: 21073770]
  62. Sci Data. 2022 Oct 15;9(1):625 [PMID: 36243727]
  63. Dev Psychol. 2015 Sep;51(9):1177-89 [PMID: 26192039]
  64. Neuroimage. 2020 Feb 15;207:116341 [PMID: 31712166]
  65. NPJ Sci Learn. 2024 Apr 2;9(1):27 [PMID: 38565857]
  66. J Neurosci. 2020 Jun 24;40(26):5090-5104 [PMID: 32451322]
  67. Child Neuropsychol. 2022 Oct;28(7):918-937 [PMID: 35129078]
  68. Neuroimage. 2020 Oct 1;219:116971 [PMID: 32454208]
  69. Nat Neurosci. 2023 Jan;26(1):4-11 [PMID: 36564545]
  70. Front Hum Neurosci. 2020 Feb 06;14:19 [PMID: 32116606]
  71. Sci Rep. 2019 Aug 6;9(1):11407 [PMID: 31388049]
  72. Dev Cogn Neurosci. 2022 Apr;54:101093 [PMID: 35248820]
  73. Dev Sci. 2024 Nov;27(6):e13504 [PMID: 38523055]
  74. Sensors (Basel). 2021 Jun 13;21(12): [PMID: 34199222]
  75. Sci Rep. 2023 Mar 29;13(1):5151 [PMID: 36991003]
  76. Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12916-12921 [PMID: 29158399]
  77. Neuroimage. 2022 May 1;251:118982 [PMID: 35149229]
  78. Child Abuse Negl. 2020 Aug;106:104485 [PMID: 32388225]
  79. Neuropsychologia. 2005;43(10):1391-9 [PMID: 15936784]
  80. Dev Psychopathol. 2022 Dec;34(5):1901-1913 [PMID: 34521492]
  81. Neuroimage. 2008 Apr 1;40(2):955-962 [PMID: 18234518]
  82. Cogn Dev. 2021 Apr-Jun;58: [PMID: 33986564]
  83. Cereb Cortex. 2024 Jan 31;34(2): [PMID: 38220574]
  84. Neuroimage. 2023 Jul 1;274:120153 [PMID: 37146782]
  85. Dev Sci. 2020 May;23(3):e12918 [PMID: 31680377]
  86. Neuropsychopharmacology. 2022 Jan;47(1):72-89 [PMID: 34408280]
  87. Neuropsychol Rev. 2024 Sep;34(3):860-881 [PMID: 37747652]
  88. Early Child Res Q. 2013 Summer;28(3):529-539 [PMID: 23997425]
  89. Child Dev Perspect. 2024 Mar;18(1):26-35 [PMID: 39421441]
  90. Dev Neuropsychol. 2010;35(1):20-36 [PMID: 20390590]
  91. Clin Neurophysiol. 2002 Aug;113(8):1199-208 [PMID: 12139998]
  92. Dev Sci. 2012 Jan;15(1):12-24 [PMID: 22251288]
  93. Annu Rev Neurosci. 2012;35:73-89 [PMID: 22524787]
  94. Dev Psychol. 2015 Jan;51(1):101-14 [PMID: 25546598]
  95. Affect Sci. 2021 May 26;3(1):14-20 [PMID: 36042782]
  96. Neuroimage. 2002 Aug;16(4):1159-64 [PMID: 12202103]

Grants

  1. R00 HD099203/NICHD NIH HHS
  2. UL1 TR001863/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0caregiversattentionlearningexecutivechildreninteractionsdevelopmentmemoryhyperscanningcanengagechild'suncoverworkingfunctionchildren'scognitiveguideprovideinfantstoddlerscomplexfunctionsoptimallyimpedeprocessintrusiveengagedimportantchildparent-childinteractionroleplaybrainreviewexistingliteratureyoungParent-childshapeoutcomesfacilitateopportunitiesrichnaturalisticexperienceslaygroundworkmatureAlthoughseekunintentionallydevelopmentalunder-engagedproperscaffoldingknowattendenvironmentparentsinadvertentlydisruptdirectinformationparentdeemsmayfinduninterestingirrelevantdisruptionevenbehaviorappearnegativelyaffectedunfoldingUnderstandingmoment-to-momentneuralbasisprocessescriticalturnimpactsSimultaneousrecordingcalledburgeoningmethodmeasuressynchronyacrossdyadssharedtaskopinionpiecefirsthighlightsguidingcontributeNextusingdualeyetrackingparadigmspatterningmannereithermatchesexpectationsover-under-directsbest-practicesemployingtechniquesinfanttoddlers'momentdevelopingpatternsbuildabilitiesadultsNeuralcaregiver-childdyads:paradigmstudyinglong-termeffectsfacilitatedvsdisruptedfunctioning

Similar Articles

Cited By