Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues.

Daniel P Caron, William L Specht, David Chen, Steven B Wells, Peter A Szabo, Isaac J Jensen, Donna L Farber, Peter A Sims
Author Information
  1. Daniel P Caron: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  2. William L Specht: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  3. David Chen: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  4. Steven B Wells: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  5. Peter A Szabo: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  6. Isaac J Jensen: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
  7. Donna L Farber: Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
  8. Peter A Sims: Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address: pas2182@cumc.columbia.edu.

Abstract

Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.

Keywords

References

  1. Nat Biotechnol. 2022 Dec;40(12):1794-1806 [PMID: 36203011]
  2. Bioinformatics. 2019 Nov 1;35(21):4472-4473 [PMID: 31073610]
  3. Nat Biotechnol. 2017 Oct;35(10):936-939 [PMID: 28854175]
  4. Blood. 1995 Aug 15;86(4):1453-9 [PMID: 7632952]
  5. Int Immunol. 2013 Feb;25(2):99-115 [PMID: 23087187]
  6. Genome Biol. 2020 Feb 7;21(1):31 [PMID: 32033589]
  7. Cell Rep. 2017 Sep 19;20(12):2921-2934 [PMID: 28930685]
  8. Blood. 2002 Nov 1;100(9):3295-303 [PMID: 12384430]
  9. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  10. Bioinformatics. 2021 Dec 7;37(23):4431-4436 [PMID: 34255817]
  11. J Hematol Oncol. 2018 Jul 31;11(1):97 [PMID: 30064449]
  12. Elife. 2021 Apr 09;10: [PMID: 33835024]
  13. Nature. 1999 Oct 14;401(6754):708-12 [PMID: 10537110]
  14. Nat Methods. 2017 Sep;14(9):865-868 [PMID: 28759029]
  15. Sci Rep. 2017 Mar 14;7:44447 [PMID: 28290550]
  16. Nucleic Acids Res. 2023 May 8;51(8):e45 [PMID: 36912104]
  17. NAR Genom Bioinform. 2020 Jun;2(2):lqaa016 [PMID: 32215369]
  18. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  19. Nat Rev Genet. 2022 Mar;23(3):169-181 [PMID: 34837041]
  20. J Immunol. 1992 Sep 15;149(6):1876-80 [PMID: 1387664]
  21. Nat Commun. 2022 Apr 19;13(1):2099 [PMID: 35440536]
  22. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  23. Nat Commun. 2019 Oct 17;10(1):4706 [PMID: 31624246]
  24. Nat Cell Biol. 2021 Nov;23(11):1129-1135 [PMID: 34750578]
  25. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  26. Mol Syst Biol. 2020 Jun;16(6):e9389 [PMID: 32567229]
  27. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  28. Sci Rep. 2016 Sep 27;6:33883 [PMID: 27670648]
  29. Genome Biol. 2022 Feb 1;23(1):42 [PMID: 35105358]
  30. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  31. Cytometry A. 2010 Feb;77(2):121-31 [PMID: 19899135]
  32. Wiley Interdiscip Rev Data Min Knowl Discov. 2011 Jan;1(1):55-63 [PMID: 22523608]
  33. Bioinformatics. 2022 Apr 28;38(9):2642-2644 [PMID: 35258562]
  34. Commun Biol. 2021 May 25;4(1):624 [PMID: 34035432]
  35. Nat Immunol. 2023 Feb;24(2):309-319 [PMID: 36658238]
  36. Wellcome Open Res. 2021 Jun 14;6:149 [PMID: 35509371]
  37. Cell. 2014 Nov 6;159(4):814-28 [PMID: 25417158]
  38. Nat Methods. 2021 Mar;18(3):272-282 [PMID: 33589839]
  39. Nat Methods. 2018 Dec;15(12):1053-1058 [PMID: 30504886]
  40. Nat Commun. 2023 Dec 19;14(1):8353 [PMID: 38114474]
  41. Am J Transplant. 2018 Jan;18(1):74-88 [PMID: 28719147]
  42. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  43. Nature. 2018 Aug;560(7718):377-381 [PMID: 30069046]
  44. Nature. 2021 Feb;590(7845):344-350 [PMID: 33505024]
  45. Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11906-11915 [PMID: 31118283]
  46. Cell. 2015 Jul 2;162(1):184-97 [PMID: 26095251]
  47. Nat Genet. 2021 Dec;53(12):1698-1711 [PMID: 34857954]
  48. Nat Rev Genet. 2023 Aug;24(8):550-572 [PMID: 37002403]
  49. Nat Methods. 2025 Feb 12;: [PMID: 39939719]
  50. Cell Syst. 2019 Apr 24;8(4):281-291.e9 [PMID: 30954476]
  51. Oncoimmunology. 2017 Feb 6;6(3):e1284723 [PMID: 28405516]
  52. Mol Syst Biol. 2019 Feb 22;15(2):e8557 [PMID: 30796088]
  53. JCI Insight. 2022 Jun 8;7(11): [PMID: 35446789]
  54. Immunity. 2009 Aug 21;31(2):296-308 [PMID: 19664941]
  55. J Immunol. 2006 Sep 1;177(5):2908-16 [PMID: 16920926]
  56. Nat Methods. 2019 May;16(5):409-412 [PMID: 31011186]
  57. Methods Mol Biol. 2019;2032:81-104 [PMID: 31522414]
  58. Nat Med. 2011 Sep 18;17(10):1290-7 [PMID: 21926977]
  59. Eur J Immunol. 2012 Jan;42(1):228-40 [PMID: 21968650]
  60. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33681983]
  61. Immunity. 2021 Feb 9;54(2):259-275.e7 [PMID: 33382972]
  62. Genome Med. 2016 Jul 27;8(1):80 [PMID: 27460926]
  63. J Immunol. 2014 Feb 15;192(4):1480-90 [PMID: 24442430]
  64. Comput Struct Biotechnol J. 2021 Jan 19;19:961-969 [PMID: 33613863]
  65. Nucleic Acids Res. 2019 Sep 19;47(16):e95 [PMID: 31226206]
  66. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  67. Cell Syst. 2024 May 15;15(5):425-444.e9 [PMID: 38703772]
  68. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  69. F1000Res. 2018 Jul 26;7:1141 [PMID: 30271584]
  70. Genome Med. 2021 May 11;13(1):82 [PMID: 33975634]
  71. Nat Methods. 2019 Oct;16(10):983-986 [PMID: 31501545]
  72. Science. 2022 May 13;376(6594):eabl5197 [PMID: 35549406]
  73. Leukemia. 2019 Mar;33(3):710-729 [PMID: 30209404]
  74. Nat Biotechnol. 2021 Jul;39(7):813-818 [PMID: 33795888]
  75. EMBO J. 2020 Oct 1;39(19):e104063 [PMID: 32790115]
  76. J Biol Chem. 2012 Sep 21;287(39):32689-96 [PMID: 22865859]
  77. Genome Med. 2018 Jul 24;10(1):57 [PMID: 30041684]
  78. Genes (Basel). 2019 Jul 12;10(7): [PMID: 31336988]
  79. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  80. Nat Rev Genet. 2019 May;20(5):273-282 [PMID: 30617341]
  81. Cells. 2023 Jul 30;12(15): [PMID: 37566049]
  82. Genome Biol. 2021 Sep 9;22(1):264 [PMID: 34503564]
  83. Nat Methods. 2019 Oct;16(10):1007-1015 [PMID: 31501550]

Grants

  1. U01 CA272610/NCI NIH HHS
  2. U19 AI128949/NIAID NIH HHS

MeSH Term

Humans
Single-Cell Analysis
Transcriptome
Cell Lineage
Gene Expression Profiling
Sequence Analysis, RNA
T-Lymphocyte Subsets

Word Cloud

Created with Highcharts 10.0.0single-cellmultimodalMMoCHiimmunecellsequencingprofilingstatessubsetsCITE-seqclassificationacrosssurfacetranscriptomesaccuratecell-typeannotationclassifierdatamodalitiesThumanlineagesCP:immunologycellsSingle-cellRNAscRNA-seqinvaluablecellularheterogeneitytranscriptionaltranscriptomicprofilesalwaysdelineatedefinedproteinsCellularindexingepitopesenablessimultaneousproteomeshoweverrequiresintegratesdescribehierarchymarker-basedapproachmultiplerelyreferenceatlasesbenchmarkusingsortedlymphocyteannotatecross-tissuedatasetoutperformsleadingtranscriptome-basedclassifiersunsupervisedclusteringabilityidentifyreadilyresolvedrevealsubsetmarkersdesignedadaptabilitycanintegratetypesdevelopmentaldiversesamplesMultimodalhierarchicaldelineatestissuessystemsbiologybatchintegrationmachinelearningmemoryspatial

Similar Articles

Cited By