High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory.
Veysi Piskobulu, Marina Athanasouli, Hanh Witte, Christian Feldhaus, Adrian Streit, Ralf J Sommer
Author Information
Veysi Piskobulu: Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Tübingen, Germany.
Marina Athanasouli: Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Tübingen, Germany.
Hanh Witte: Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Tübingen, Germany.
Christian Feldhaus: Max-Planck Institute for Biology Tübingen, BioOptics Facility, Tübingen, Germany.
Adrian Streit: Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Tübingen, Germany.
Ralf J Sommer: Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Tübingen, Germany. ORCID
中文译文
English
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Science. 2008 Mar 28;319(5871):1827-30
[PMID: 18339900 ]
Development. 2018 Jul 2;145(13):
[PMID: 29967123 ]
Cell Chem Biol. 2018 Jun 21;25(6):787-796.e12
[PMID: 29779955 ]
Sci Rep. 2021 Mar 15;11(1):5931
[PMID: 33723307 ]
Mol Biol Evol. 2016 Oct;33(10):2506-14
[PMID: 27189572 ]
Nat Commun. 2023 Apr 13;14(1):2095
[PMID: 37055396 ]
Nat Ecol Evol. 2020 Jul;4(7):970-978
[PMID: 32424280 ]
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2308816120
[PMID: 37527340 ]
Biology (Basel). 2024 Nov 13;13(11):
[PMID: 39596877 ]
Front Cell Dev Biol. 2022 Aug 24;10:985831
[PMID: 36092706 ]
Proc Biol Sci. 2014 Sep 22;281(1791):20141334
[PMID: 25080344 ]
Bioinformatics. 2014 Apr 1;30(7):923-30
[PMID: 24227677 ]
Cell Rep. 2017 Oct 17;21(3):834-844
[PMID: 29045848 ]
J Insect Physiol. 2024 Dec;159:104713
[PMID: 39374867 ]
BMC Evol Biol. 2015 Sep 15;15:185
[PMID: 26370559 ]
Nat Genet. 2008 Oct;40(10):1193-8
[PMID: 18806794 ]
Genetics. 2020 Dec;216(4):947-956
[PMID: 33060138 ]
Nat Commun. 2022 Feb 9;13(1):768
[PMID: 35140229 ]
Cell Metab. 2009 Nov;10(5):430-5
[PMID: 19883620 ]
Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12438-43
[PMID: 23161728 ]
PLoS One. 2018 Jul 10;13(7):e0199888
[PMID: 29990370 ]
Nat Commun. 2015 Mar 11;6:6513
[PMID: 25758336 ]
Nat Commun. 2016 Aug 04;7:12337
[PMID: 27487725 ]
PLoS Genet. 2020 Apr 13;16(4):e1008687
[PMID: 32282814 ]
Biomolecules. 2022 Feb 22;12(3):
[PMID: 35327534 ]
Curr Biol. 2011 Sep 27;21(18):R738-49
[PMID: 21959164 ]
Genome Biol. 2014;15(12):550
[PMID: 25516281 ]
Biol Rev Camb Philos Soc. 2017 May;92(2):964-992
[PMID: 27000555 ]
Nature. 2011 May 26;473(7348):478-83
[PMID: 21516106 ]
J Nematol. 2021 Nov 03;53:
[PMID: 34761228 ]
Zoology (Jena). 2006;109(2):96-108
[PMID: 16616467 ]
J Mol Evol. 2015 Jan;80(1):18-36
[PMID: 25323991 ]
Mol Biol Evol. 2019 Nov 1;36(11):2387-2399
[PMID: 31364718 ]
Nat Protoc. 2020 Aug;15(8):2611-2644
[PMID: 32632318 ]
Nat Commun. 2023 Dec 19;14(1):8439
[PMID: 38114491 ]
Evol Dev. 2013 May;15(3):161-70
[PMID: 23607300 ]
PLoS Genet. 2014 May 01;10(5):e1004346
[PMID: 24785260 ]
Nat Methods. 2012 Jun 28;9(7):676-82
[PMID: 22743772 ]
Genes Nutr. 2010 Mar;5(1):17-27
[PMID: 19936816 ]
ISME J. 2020 Jun;14(6):1494-1507
[PMID: 32152389 ]
Genes Dev. 2015 Dec 1;29(23):2490-503
[PMID: 26637528 ]
PLoS Genet. 2014 Jan;10(1):e1004098
[PMID: 24453990 ]
Front Genet. 2019 Feb 26;10:132
[PMID: 30863426 ]
Dev Genes Evol. 2015 Jan;225(1):55-62
[PMID: 25548084 ]
Environ Microbiol. 2017 Apr;19(4):1476-1489
[PMID: 28198090 ]
Nature. 2010 Jul 22;466(7305):494-7
[PMID: 20592728 ]
Science. 2018 Jul 27;361(6400):398-402
[PMID: 30049879 ]
Cell. 2013 Nov 7;155(4):922-33
[PMID: 24209628 ]
Front Cell Dev Biol. 2021 Jun 11;9:690373
[PMID: 34179018 ]
Environ Microbiol. 2021 Sep;23(9):5102-5113
[PMID: 33587771 ]
Nat Chem Biol. 2007 Jul;3(7):420-2
[PMID: 17558398 ]
J Clin Med. 2016 Feb 02;5(2):
[PMID: 26848697 ]
Mol Cell Biol. 2003 Aug;23(15):5293-300
[PMID: 12861015 ]
Sci Rep. 2024 Jun 7;14(1):13177
[PMID: 38849503 ]
Nat Ecol Evol. 2020 Nov;4(11):1539-1548
[PMID: 32868918 ]
Dev Cell. 2003 Jan;4(1):131-42
[PMID: 12530969 ]
Sci Rep. 2017 Aug 3;7(1):7207
[PMID: 28775277 ]
Evol Lett. 2023 Jan 31;7(1):48-57
[PMID: 37065436 ]
Science. 1989 Feb 3;243(4891):643-6
[PMID: 17834231 ]
Bioinformatics. 2013 Jan 1;29(1):15-21
[PMID: 23104886 ]
Ecol Evol. 2015 Apr;5(7):1405-11
[PMID: 25897380 ]
Environ Health Perspect. 2006 Apr;114(4):567-72
[PMID: 16581547 ]
Nat Chem Biol. 2017 May 17;13(6):577-586
[PMID: 28514418 ]
R Soc Open Sci. 2017 Jun 7;4(6):161039
[PMID: 28680661 ]
J Am Chem Soc. 2018 Feb 28;140(8):2841-2852
[PMID: 29401383 ]
Evol Dev. 2002 Jul-Aug;4(4):252-64
[PMID: 12168618 ]
Nature. 2017 Apr 13;544(7649):185-190
[PMID: 28379943 ]
J Exp Zool B Mol Dev Evol. 2023 Mar;340(2):214-224
[PMID: 34379868 ]
Genetics. 2007 Jun;176(2):865-75
[PMID: 17435249 ]
Mol Biol Evol. 2021 Jun 25;38(7):3022-3027
[PMID: 33892491 ]
Mol Biol Evol. 2021 Jan 4;38(1):229-243
[PMID: 32785688 ]
J Vis Exp. 2013 Nov 29;(81):
[PMID: 24326396 ]
Nat Commun. 2018 Oct 8;9(1):4119
[PMID: 30297689 ]
Genetics. 2020 May;215(1):1-13
[PMID: 32371438 ]
J Exp Zool B Mol Dev Evol. 2021 Sep;336(6):482-495
[PMID: 34142757 ]
PLoS Genet. 2023 Jul 3;19(7):e1010832
[PMID: 37399201 ]
Cell Rep. 2018 Jun 5;23(10):2835-2843.e4
[PMID: 29874571 ]
Genetics. 2024 May 7;227(1):
[PMID: 38513719 ]
Evol Dev. 2024 Mar;26(2):e12471
[PMID: 38356318 ]
G3 (Bethesda). 2016 Aug 09;6(8):2407-19
[PMID: 27261001 ]
Arch Biochem Biophys. 2008 Apr 1;472(1):65-75
[PMID: 18282462 ]
Sci Adv. 2024 Apr 12;10(15):eadk6062
[PMID: 38598624 ]
iScience. 2018 Dec 21;10:123-134
[PMID: 30513394 ]
J Exp Biol. 2009 Nov;212(Pt 22):3743-50
[PMID: 19880737 ]
BMC Genomics. 2020 Oct 12;21(1):708
[PMID: 33045985 ]
/This study was supported by Max-Planck-Gesellschaft.
Animals
Feeding Behavior
Animal Nutritional Physiological Phenomena
Glucose
Fatty Acids
Rhabditida
Mouth
Nematoda
Predatory Behavior