Novel efficient reservoir computing methodologies for regular and irregular time series classification.

Zonglun Li, Andrey Andreev, Alexander Hramov, Oleg Blyuss, Alexey Zaikin
Author Information
  1. Zonglun Li: Department of Mathematics, University College London, London, UK.
  2. Andrey Andreev: Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Aleksandra Nevskogo Str., 14, Kaliningrad, Russia 236041.
  3. Alexander Hramov: Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Aleksandra Nevskogo Str., 14, Kaliningrad, Russia 236041.
  4. Oleg Blyuss: Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
  5. Alexey Zaikin: Department of Mathematics, University College London, London, UK.

Abstract

Time series is a data structure prevalent in a wide range of fields such as healthcare, finance and meteorology. It goes without saying that analyzing time series data holds the key to gaining insight into our day-to-day observations. Among the vast spectrum of time series analysis, time series classification offers the unique opportunity to classify the sequences into their respective categories for the sake of automated detection. To this end, two types of mainstream approaches, recurrent neural networks and distance-based methods, have been commonly employed to address this specific problem. Despite their enormous success, methods like Long Short-Term Memory networks typically require high computational resources. It is largely as a consequence of the nature of backpropagation, driving the search for some backpropagation-free alternatives. Reservoir computing is an instance of recurrent neural networks that is known for its efficiency in processing time series sequences. Therefore, in this article, we will develop two reservoir computing based methods that can effectively deal with regular and irregular time series with minimal computational cost, both while achieving a desirable level of classification accuracy.

Keywords

References

  1. Curr Opin Neurobiol. 2014 Apr;25:140-8 [PMID: 24487341]
  2. Sensors (Basel). 2022 Aug 07;22(15): [PMID: 35957464]
  3. Nat Neurosci. 1999 Nov;2(11):947-57 [PMID: 10526332]
  4. Lancet. 2016 Mar 5;387(10022):945-956 [PMID: 26707054]
  5. Neural Netw. 2012 Nov;35:1-9 [PMID: 22885243]
  6. Biochim Biophys Acta Rev Cancer. 2021 Apr;1875(2):188503 [PMID: 33421585]
  7. J Physiol. 1962 Jan;160:106-54 [PMID: 14449617]
  8. Nat Rev Genet. 2012 Jul 18;13(8):552-64 [PMID: 22805708]
  9. Neural Comput. 2019 Jul;31(7):1235-1270 [PMID: 31113301]
  10. Nat Commun. 2021 Sep 21;12(1):5564 [PMID: 34548491]
  11. Biomed Signal Process Control. 2018 Sep;46:86-93 [PMID: 30245736]
  12. J Neurosci. 2009 Jan 28;29(4):1006-10 [PMID: 19176809]
  13. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  14. Neural Netw. 2007 Apr;20(3):335-52 [PMID: 17517495]
  15. PLoS Comput Biol. 2022 Nov 16;18(11):e1010639 [PMID: 36383563]
  16. Biomed Res Int. 2015;2015:681416 [PMID: 26819954]
  17. Dis Markers. 2007;23(5-6):397-410 [PMID: 18057523]
  18. Sensors (Basel). 2017 Jan 30;17(2): [PMID: 28146106]
  19. Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180377 [PMID: 31006369]
  20. JAMA. 2011 Jun 8;305(22):2295-303 [PMID: 21642681]
  21. IEEE Trans Cybern. 2016 Jun;46(6):1363-74 [PMID: 25966490]
  22. Eur Radiol. 2023 Jun;33(6):3792-3800 [PMID: 36749370]
  23. Neural Comput. 2013 Mar;25(3):671-96 [PMID: 23272918]
  24. Biol Cybern. 1981;42(2):133-43 [PMID: 7326288]
  25. Neuron. 2011 Feb 24;69(4):818-31 [PMID: 21338889]
  26. PLoS One. 2023 Apr 6;18(4):e0282122 [PMID: 37023084]
  27. J Neurosci. 2011 Aug 24;31(34):12171-9 [PMID: 21865460]
  28. Cancers (Basel). 2020 Dec 11;12(12): [PMID: 33322519]
  29. Nat Commun. 2018 Jan 3;9(1):48 [PMID: 29298987]
  30. Knowl Inf Syst. 2017 May;51(2):339-367 [PMID: 28603327]

Word Cloud

Created with Highcharts 10.0.0seriestimeclassificationnetworkscomputingmethodsTimedatasequencestworecurrentneuralcomputationalReservoirreservoirregularirregularstructureprevalentwiderangefieldshealthcarefinancemeteorologygoeswithoutsayinganalyzingholdskeygaininginsightday-to-dayobservationsAmongvastspectrumanalysisoffersuniqueopportunityclassifyrespectivecategoriessakeautomateddetectionendtypesmainstreamapproachesdistance-basedcommonlyemployedaddressspecificproblemDespiteenormoussuccesslikeLongShort-TermMemorytypicallyrequirehighresourceslargelyconsequencenaturebackpropagationdrivingsearchbackpropagation-freealternativesinstanceknownefficiencyprocessingThereforearticlewilldevelopbasedcaneffectivelydealminimalcostachievingdesirablelevelaccuracyNovelefficientmethodologiesEchostateNonlineardynamicalsystems

Similar Articles

Cited By

No available data.