Understanding recurrent groin pain following periacetabular osteotomy: assessment of psoas tendon mechanics using discrete element analysis.

Karadi H Sunil Kumar, Floris Van Damme, Ide Van den Borr, Vikas Khanduja, Emmanuel Audenaert, Ajay Malviya
Author Information
  1. Karadi H Sunil Kumar: Wansbeck General Hospital, Northumbria Healthcare NHS Foundation Trust, Ashington, UK. ORCID
  2. Floris Van Damme: UZ Gent, University of Ghent, C. Heymanslaan 10, Ghent 9000, Belgium.
  3. Ide Van den Borr: UZ Gent, University of Ghent, C. Heymanslaan 10, Ghent 9000, Belgium.
  4. Vikas Khanduja: Addenbrookes-Cambridge University Hospitals NHS Trust, Hills Road, Cambridge CB2 0QQ, UK. ORCID
  5. Emmanuel Audenaert: UZ Gent, University of Ghent, C. Heymanslaan 10, Ghent 9000, Belgium. ORCID
  6. Ajay Malviya: Wansbeck General Hospital, Northumbria Healthcare NHS Foundation Trust, Ashington, UK. ORCID

Abstract

Recurrent groin pain following periacetabular osteotomy (PAO) is a challenging problem. The purpose of our study was to evaluate the position and dynamics of the psoas tendon as a potential cause for recurrent groin pain following PAO. A total of 386 PAO procedures, performed between January 2013 and January 2020, were identified from a single surgeon series. Thirteen patients (18 hips) had a psoas tendinopathy, as confirmed with relief of symptoms following a diagnostic injection into the psoas tendon. All patients underwent computed tomography (CT) scans pre- and post-operatively. The data from CT scan was used to manually segment bony structures and create 3D models using Mimics software (Materialise NV). A validated discrete element analysis model using rigid body springs was used to predict psoas tendon movement during hip circumduction and walking. The distance of the iliopsoas tendon to any bony abnormality was calculated. All computational analyses were performed using MATLAB software. Thirteen hips (13/18) showed bony malformations (spurs, hypertrophic callus or delayed union and malunion) secondary to callus at the superior pubic ramus. The mean minimal distance of the iliopsoas tendon to osteotomy site was found to be 13.73 mm ( = 3.09) for spurs, 10.99 mm ( = 2.85) for hypertrophic callus and 11.91 mm ( = 2.55) for canyon type. In normal bony healing, the mean minimal distance was 18.55 mm ( = 4.11). Using a validated computational modelling technique, this study has demonstrated three different types of malformation around the superior pubic osteotomy site, which are associated with psoas impingement. In all of the cases, the minimal distance of the iliopsoas tendon to the osteotomy site was reduced by 59-74%, as compared with the normal anatomy.

References

  1. Front Bioeng Biotechnol. 2020 Mar 27;8:264 [PMID: 32292780]
  2. J Hip Preserv Surg. 2017 Nov 17;5(1):39-46 [PMID: 29423249]
  3. J Bone Joint Surg Am. 2005 Feb;87(2):254-9 [PMID: 15687144]
  4. Clin Biomech (Bristol). 2019 Dec;70:186-191 [PMID: 31526958]
  5. Acta Orthop. 2019 Feb;90(1):40-45 [PMID: 30712500]
  6. Int Orthop. 2016 May;40(5):891-900 [PMID: 26216530]
  7. Comput Methods Biomech Biomed Engin. 2019 May;22(6):644-657 [PMID: 30822149]
  8. J Hip Preserv Surg. 2019 Mar 30;6(2):117-123 [PMID: 31660196]
  9. Arch Orthop Trauma Surg. 2018 Aug;138(8):1059-1067 [PMID: 29728835]
  10. Surg Clin North Am. 1974 Dec;54(6):1327-35 [PMID: 4432210]
  11. J Mech Behav Biomed Mater. 2023 Feb;138:105621 [PMID: 36549248]
  12. J Bone Joint Surg Am. 2016 Jan 6;98(1):63-73 [PMID: 26738905]
  13. Magn Reson Imaging Clin N Am. 2013 Feb;21(1):1-19 [PMID: 23168179]
  14. Am J Sports Med. 2014 Apr;42(4):807-11 [PMID: 24451113]
  15. Clin Orthop Relat Res. 2017 Apr;475(4):1154-1168 [PMID: 27905061]
  16. J Bone Joint Surg Am. 2011 May;93 Suppl 2:17-21 [PMID: 21543683]
  17. Sports Med Arthrosc Rev. 2015 Dec;23(4):194-9 [PMID: 26524554]
  18. J Bone Joint Surg Am. 2010 Jul 21;92(8):1707-14 [PMID: 20660233]
  19. Spine (Phila Pa 1976). 2011 Dec 15;36(26):E1666-74 [PMID: 21415810]
  20. J Hip Preserv Surg. 2021 Feb 08;7(4):677-687 [PMID: 34548927]
  21. J Bone Joint Surg Am. 2014 Dec 3;96(23):1967-74 [PMID: 25471911]
  22. Clin Orthop Relat Res. 1973 May;(92):6-15 [PMID: 4710845]
  23. J Bone Joint Surg Am. 2017 Jan 4;99(1):33-41 [PMID: 28060231]
  24. Clin Orthop Relat Res. 2009 Aug;467(8):2041-52 [PMID: 19381741]
  25. J Arthroplasty. 2017 Sep;32(9S):S20-S27 [PMID: 28389135]
  26. J Arthroplasty. 2017 Sep;32(9S):S32-S37 [PMID: 28318866]
  27. Clin Orthop Relat Res. 2004 Jan;(418):18-22 [PMID: 15043087]
  28. Acta Orthop. 2020 Jun;91(3):299-305 [PMID: 32106751]
  29. J Orthop Res. 2022 Jun;40(6):1387-1396 [PMID: 34415648]
  30. Int Orthop. 2008 Oct;32(5):611-7 [PMID: 17579861]
  31. Comput Methods Biomech Biomed Engin. 2022 Jul;25(9):1028-1039 [PMID: 34714697]
  32. Clin Orthop Relat Res. 2020 Jul;478(7):1648-1656 [PMID: 32452931]
  33. Clin Orthop Relat Res. 2008 Jul;466(7):1633-44 [PMID: 18449617]
  34. Clin Anat. 2015 Mar;28(2):243-52 [PMID: 25227908]
  35. J Biomech. 2001 Jul;34(7):859-71 [PMID: 11410170]
  36. World J Orthop. 2016 May 18;7(5):280-6 [PMID: 27190755]

Word Cloud

Created with Highcharts 10.0.0tendonpsoasfollowingosteotomybonyusingdistancegroinpainPAOiliopsoascallusminimalsiteperiacetabularstudyrecurrentperformedJanuaryThirteenpatients18hipsCTusedsoftwarevalidateddiscreteelementanalysiscomputationalspurshypertrophicsuperiorpubicmean = 211normalRecurrentchallengingproblempurposeevaluatepositiondynamicspotentialcausetotal386procedures20132020identifiedsinglesurgeonseriestendinopathyconfirmedreliefsymptomsdiagnosticinjectionunderwentcomputedtomographyscanspre-post-operativelydatascanmanuallysegmentstructurescreate3DmodelsMimicsMaterialiseNVmodelrigidbodyspringspredictmovementhipcircumductionwalkingabnormalitycalculatedanalysesMATLAB13/18showedmalformationsdelayedunionmalunionsecondaryramusfound1373 mm = 3091099 mm8591 mm55canyontypehealing55 mm = 4Usingmodellingtechniquedemonstratedthreedifferenttypesmalformationaroundassociatedimpingementcasesreduced59-74%comparedanatomyUnderstandingosteotomy:assessmentmechanics

Similar Articles

Cited By (1)