Association of systemic inflammatory markers with white matter hyperintensities and microstructural injury: an analysis of UK Biobank data.
Yuan Qiao, Lei Zhao, Chaohua Cong, Yuna Li, Shan Tian, Xirui Zhu, Junting Yang, Shanshan Cao, Panlong Li, Jingjing Su
Author Information
Yuan Qiao: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Lei Zhao: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Chaohua Cong: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Yuna Li: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Shan Tian: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Xirui Zhu: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Junting Yang: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Shanshan Cao: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
Panlong Li: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li) jingjingsu2000@163.com 2019021@zzuli.edu.cn.
Jingjing Su: From the Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Qiao, Zhao, Cong, Y. Li, Tian, Yang, Cao, Su); the School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China (Zhu); the Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (P. Li).
BACKGROUND: white matter damage is closely associated with cognitive and psychiatric symptoms and is prevalent in cerebral small vessel disease (CSVD); although the pathophysiological mechanisms involved in CSVD remain elusive, inflammation plays a crucial role. We sought to investigate the relationship between systemic inflammation markers and imaging markers of CVSD, namely white matter hyperintensity (WMH) and microstructural injury. METHODS: We conducted a study involving both cross-sectional and longitudinal data from the UK Biobank Cohort. We performed multiple linear regression analyses, adjusted for potential confounders, to explore the associations between systemic inflammation markers (e.g., systemic immune-inflammation index [SII], neutrophil-to-lymphocyte ratio [NLR], C-reactive protein [CRP] levels, monocyte count, neutrophil count) and macro- and microstructural white matter injury, as markers of CSVD. We performed Mendelian randomization analysis to investigate the genetically predictive effect of monocytes on WMH, as well as mediation analysis to clarify whether inflammatory markers affected cognitive function via white matter injury. RESULTS: We included 36 411 participants (mean age 54.8 ± 7.5 yr, 51.9% female) from the UK Biobank Cohort. We found that SII was significantly associated with both WMH and microstructural injury markers (fractional anisotropy, mean diffusivity, intracellular volume fraction, and isotropic compartment volume fraction [ISOVF]), and the neutrophil-to-lymphocyte ratio was significantly associated with WMH and some markers of microstructural injury (mean diffusivity and ISOVF). Our analysis revealed that the CRP level was significantly associated with WMH and WMH progression but not with microstructural injury. We also demonstrated that monocyte count was significantly associated with WMH and ISOVF, and that neutrophil count was significantly associated with WMH, mean diffusivity, and ISOVF. In 2-sample Mendelian randomization analyses, we found positive associations between genetic determinants of monocytes and WMH. The mediating role of WMH suggested that a higher SII value and monocyte count could contribute to cognitive impairment through white matter injury. LIMITATIONS: Although the study includes both cross-sectional and longitudinal components, the sample size for the longitudinal aspect is limited, and the use of blood biomarkers from a single timepoint is also a limitation of this research. CONCLUSION: The SII and neutrophil-to-lymphocyte ratio may be early detection markers for white matter damage in patients with CSVD, whereas the CRP level is more closely associated with disease severity and progression. Our findings highlight the clinical relevance of systemic inflammation markers with white matter macro- and microstructural injuries, revealing that systemic inflammation is likely involved in the mechanism of early white matter injury among patients with CSVD.