Shorter and inflexible intrinsic neural timescales of the self in schizophrenia.

Frank Djimbouon, Philipp Klar, Georg Northoff
Author Information
  1. Frank Djimbouon: From the Faculty of Medicine, University of Ottawa, Ottawa, Ont. (Djimbouon); the Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ont. (Djimbouon, Northoff); the Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany (Klar); and the Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany (Klar) fdjim028@uottawa.ca.
  2. Philipp Klar: From the Faculty of Medicine, University of Ottawa, Ottawa, Ont. (Djimbouon); the Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ont. (Djimbouon, Northoff); the Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany (Klar); and the Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany (Klar).
  3. Georg Northoff: From the Faculty of Medicine, University of Ottawa, Ottawa, Ont. (Djimbouon); the Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ont. (Djimbouon, Northoff); the Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany (Klar); and the Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany (Klar).

Abstract

BACKGROUND: Schizophrenia is hypothesized to involve a disturbance in the temporal dynamics of self-processing, specifically within the interoceptive, exteroceptive, and cognitive layers of the self. This study aimed to investigate the intrinsic neural timescales (INTs) within these self-processing layers among people with Schizophrenia.
METHODS: We conducted a functional magnetic resonance imaging (fMRI) study to investigate INTs, as measured by the autocorrelation window, among people with Schizophrenia and healthy controls during both resting-state and task (memory encoding and retrieval) conditions. We obtained data from the UCLA Consortium for Neuropsychiatric Phenomics data set and preprocessed using fMRIPrep.
RESULTS: We included 45 people with Schizophrenia and 65 healthy controls. Compared with controls, participants with Schizophrenia exhibited significantly shorter INTs across all 3 self-processing layers during rest ( < 0.05). In addition, those with Schizophrenia showed less INT shortening during task states, leading to reduced rest-task differences in INT across all self-processing layers ( < 0.05). We observed similar patterns of shortened INTs in primary sensory and motor regions.
LIMITATIONS: We included people with Schizophrenia taking medication, which may influence INTs; our study was also limited by the relatively slow temporal resolution of the fMRI data and the higher variability of the autocorrelation function in the Schizophrenia group, compared with the control group.
CONCLUSION: Our findings suggest that Schizophrenia is characterized by a global temporal disturbance of the self, manifesting as shorter and inflexible INTs across self-processing and sensorimotor regions. These results support the hypothesis that Schizophrenia involves a fundamental disruption in the temporal integration of neural signals, contributing to the core self-disturbance observed in the disorder.

References

  1. Front Psychiatry. 2020 May 12;11:422 [PMID: 32477194]
  2. Neurosci Biobehav Rev. 2023 Nov;154:105430 [PMID: 37871780]
  3. F1000Res. 2017 Jul 28;6:1262 [PMID: 29152222]
  4. Sci Rep. 2017 Aug 15;7(1):8278 [PMID: 28811493]
  5. Cereb Cortex. 2018 Sep 1;28(9):3095-3114 [PMID: 28981612]
  6. Sci Data. 2016 Dec 06;3:160110 [PMID: 27922632]
  7. Neuroscientist. 2023 Aug;29(4):393-420 [PMID: 35611670]
  8. Schizophr Bull. 2021 Apr 29;47(3):751-765 [PMID: 33305324]
  9. Asian J Psychiatr. 2023 Aug;86:103654 [PMID: 37307700]
  10. Neurosci Biobehav Rev. 2020 Aug;115:77-95 [PMID: 32492474]
  11. Brain Sci. 2023 Apr 21;13(4): [PMID: 37190660]
  12. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20890-20897 [PMID: 32817467]
  13. World Psychiatry. 2018 Jun;17(2):220-221 [PMID: 29856572]
  14. Transl Psychiatry. 2023 Jun 21;13(1):214 [PMID: 37339983]
  15. Neuropsychologia. 2013 Nov;51(13):2909-17 [PMID: 23993906]
  16. J Neurosci. 2016 Jul 27;36(30):7829-40 [PMID: 27466329]
  17. Schizophr Bull. 2009 Nov;35(6):1034-6 [PMID: 19478239]
  18. Front Neural Circuits. 2020 Dec 21;14:615626 [PMID: 33408616]
  19. Schizophr Bull. 2011 Jan;37(1):4-7 [PMID: 20603444]
  20. Mol Psychiatry. 2024 Feb;29(2):425-438 [PMID: 38228893]
  21. Neuroimage. 2007 Aug 1;37(1):90-101 [PMID: 17560126]
  22. Br J Psychiatry Suppl. 1989 Nov;(7):49-58 [PMID: 2695141]
  23. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  24. Schizophr Bull. 2020 Apr 10;46(3):530-539 [PMID: 31784743]
  25. Nat Methods. 2019 Jan;16(1):111-116 [PMID: 30532080]
  26. Commun Biol. 2022 Dec 8;5(1):1350 [PMID: 36481785]
  27. Psychopathology. 2021;54(6):275-281 [PMID: 34384082]
  28. NPJ Schizophr. 2021 Nov 22;7(1):55 [PMID: 34811376]
  29. Trends Cogn Sci. 2022 Feb;26(2):159-173 [PMID: 34991988]
  30. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  31. Psychopathology. 2022;55(3-4):132-142 [PMID: 34872083]
  32. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  33. Schizophrenia (Heidelb). 2023 Mar 30;9(1):18 [PMID: 36997542]
  34. Trends Cogn Sci. 2015 Dec;19(12):719-728 [PMID: 26447060]
  35. Neuroimage. 2014 Jan 1;84:320-41 [PMID: 23994314]
  36. Schizophr Bull. 2011 Mar;37(2):344-51 [PMID: 19528205]
  37. J Neurosci. 2018 Feb 28;38(9):2304-2317 [PMID: 29386261]
  38. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 [PMID: 20378467]
  39. Elife. 2020 Nov 23;9: [PMID: 33226336]
  40. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  41. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Jul 13;101:109917 [PMID: 32169560]
  42. Early Interv Psychiatry. 2023 Mar;17(3):231-243 [PMID: 36935204]
  43. Schizophr Bull. 2021 Jan 23;47(1):170-179 [PMID: 32614395]
  44. Conscious Cogn. 2023 Nov;116:103600 [PMID: 37976779]
  45. Neuroimage. 2009 Oct 15;48(1):63-72 [PMID: 19573611]
  46. Am J Psychiatry. 2015 Jan;172(1):17-31 [PMID: 25553496]
  47. Cereb Cortex. 2022 Aug 3;32(16):3441-3456 [PMID: 34875019]
  48. Trends Cogn Sci. 2019 May;23(5):377-388 [PMID: 30826212]
  49. Elife. 2020 Oct 27;9: [PMID: 33107431]

MeSH Term

Humans
Schizophrenia
Male
Female
Magnetic Resonance Imaging
Adult
Brain
Middle Aged
Time Factors
Ego
Young Adult
Interoception
Schizophrenic Psychology
Rest

Word Cloud

Created with Highcharts 10.0.0schizophreniaINTsself-processingtemporallayerspeopleselfstudyneuralcontrolsdataacrossdisturbancewithininvestigateintrinsictimescalesamongfMRIautocorrelationhealthytaskincludedshorter<005INTobservedregionsgroupinflexibleBACKGROUND:SchizophreniahypothesizedinvolvedynamicsspecificallyinteroceptiveexteroceptivecognitiveaimedMETHODS:conductedfunctionalmagneticresonanceimagingmeasuredwindowresting-statememoryencodingretrievalconditionsobtainedUCLAConsortiumNeuropsychiatricPhenomicssetpreprocessedusingfMRIPrepRESULTS:4565Comparedparticipantsexhibitedsignificantly3restadditionshowedlessshorteningstatesleadingreducedrest-taskdifferencessimilarpatternsshortenedprimarysensorymotorLIMITATIONS:takingmedicationmayinfluencealsolimitedrelativelyslowresolutionhighervariabilityfunctioncomparedcontrolCONCLUSION:findingssuggestcharacterizedglobalmanifestingsensorimotorresultssupporthypothesisinvolvesfundamentaldisruptionintegrationsignalscontributingcoreself-disturbancedisorderShorter

Similar Articles

Cited By

No available data.