Synthetic studies of the mutant proinsulin syndrome demonstrate correlation between folding efficiency and age of diabetes onset.

Balamurugan Dhayalan, Yen-Shan Chen, Chun-Lun Ni, Michael A Weiss
Author Information
  1. Balamurugan Dhayalan: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
  2. Yen-Shan Chen: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
  3. Chun-Lun Ni: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
  4. Michael A Weiss: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.

Abstract

Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic ��-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion. In the present work we sought to study relative folding efficiencies of proinsulin variants in relation to age of disease onset.
Methods: To enable efficient preparation of non-foldable variants, we developed a four-segment native chemical-ligation scheme that exploits two native cysteines (Cys and Cys; residues 19 and 71 in proinsulin) and an alanine in the connecting domain (Ala; residue 50). From N- to C terminus, the four segments have respective lengths 18, 31, 22 and 15 residues-convenient to "mix and match" native and variant synthetic segments as a platform technology.
Results: Folding of the reduced and unfolded polypeptides was investigated under three conditions: pH 10.6 (which promotes disulfide pairing as in the pharmaceutical manufacture of insulin) and pH 7.4 in the absence or presence of "foldase" protein disulfide isomerase. Whereas wild-type proinsulin efficiently folds to form a single dominant product (in accordance with classical studies), the clinical variants exhibited marked impairment, especially at neutral pH.
Conclusion: Among representative clinical variants, relative folding yields correlated with both degree of ER stress in cell culture and ages of clinical diabetes onset (neonatal, adolescence or adulthood). Implications for the native mechanism of nascent protein folding are discussed.

Keywords

References

  1. Int J Pept Protein Res. 1985 Apr;25(4):431-4 [PMID: 3894263]
  2. Methods Enzymol. 1997;289:198-221 [PMID: 9353723]
  3. J Biol Chem. 2011 Jan 7;286(1):661-73 [PMID: 20974844]
  4. J Am Chem Soc. 2009 Nov 11;131(44):16313-8 [PMID: 19835355]
  5. Diabetes. 2008 Apr;57(4):1034-42 [PMID: 18162506]
  6. Science. 1994 Nov 4;266(5186):776-9 [PMID: 7973629]
  7. Protein Sci. 2003 Nov;12(11):2412-9 [PMID: 14573855]
  8. Diabetes. 2011 Aug;60(8):2092-101 [PMID: 21677281]
  9. Cells. 2023 Mar 25;12(7): [PMID: 37048081]
  10. Chem Commun (Camb). 2010 Nov 21;46(43):8177-9 [PMID: 20877850]
  11. Chemistry. 2017 Jan 31;23(7):1709-1716 [PMID: 27905149]
  12. Mol Metab. 2024 Feb;80:101879 [PMID: 38237895]
  13. Front Endocrinol (Lausanne). 2022 Jun 20;13:900489 [PMID: 35795147]
  14. Front Endocrinol (Lausanne). 2011 Oct 18;2:48 [PMID: 22649374]
  15. Front Endocrinol (Lausanne). 2022 Mar 01;13:821091 [PMID: 35299958]
  16. Biochemistry. 1998 May 26;37(21):7822-33 [PMID: 9601043]
  17. J Clin Invest. 1984 May;73(5):1351-8 [PMID: 6371057]
  18. Front Endocrinol (Lausanne). 2021 Apr 22;12:650158 [PMID: 33967960]
  19. J Biol Chem. 2010 Mar 12;285(11):7847-51 [PMID: 20106974]
  20. Science. 2020 May 29;368(6494):980-987 [PMID: 32467387]
  21. Metabolism. 2022 Aug;133:155217 [PMID: 35584732]
  22. Protein Sci. 2003 Apr;12(4):768-75 [PMID: 12649435]
  23. Protein Sci. 2019 Feb;28(2):313-328 [PMID: 30345579]
  24. Diabetes Care. 1993 Dec;16 Suppl 3:133-42 [PMID: 8299470]
  25. Mol Metab. 2021 Oct;52:101280 [PMID: 34174481]
  26. Pediatr Diabetes. 2018 Aug;19(5):905-909 [PMID: 29633446]
  27. Angew Chem Int Ed Engl. 2010 Jul 26;49(32):5489-93 [PMID: 20509131]
  28. Annu Rev Biochem. 2023 Jun 20;92:247-272 [PMID: 37001136]
  29. Mol Cell Endocrinol. 2021 Mar 1;523:111146 [PMID: 33385475]
  30. J Biol Chem. 2010 Jan 1;285(1):685-94 [PMID: 19880509]
  31. Diabetes. 2016 Apr;65(4):1050-60 [PMID: 26822090]
  32. J Biol Chem. 2008 Jun 20;283(25):17020-9 [PMID: 18426796]
  33. Chem Rev. 2021 Apr 28;121(8):4531-4560 [PMID: 33689304]
  34. Annu Rev Biochem. 1990;59:631-60 [PMID: 2197986]
  35. Bone. 2000 Jan;26(1):87-93 [PMID: 10617161]
  36. Biol Chem. 1997 Aug;378(8):731-44 [PMID: 9377467]
  37. Front Endocrinol (Lausanne). 2021 Sep 30;12:754693 [PMID: 34659132]
  38. Lancet. 2016 Jun 18;387(10037):2554-64 [PMID: 27353686]
  39. Diabetes Care. 2020 Dec;43(12):3117-3128 [PMID: 33560999]
  40. Diabetes. 1978;27 Suppl 1:149-60 [PMID: 631437]
  41. Acta Diabetol. 2016 Jun;53(3):499-501 [PMID: 26239141]
  42. J Clin Endocrinol Metab. 2007 Mar;92(3):771-8 [PMID: 17164308]
  43. Diabetes. 2020 May;69(5):954-964 [PMID: 32139596]
  44. Angew Chem Int Ed Engl. 2007;46(48):9248-52 [PMID: 18046687]
  45. Hormones (Athens). 2008 Jul-Sep;7(3):217-29 [PMID: 18694860]
  46. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369-456 [PMID: 2905485]
  47. Biochem J. 1955 Aug;60(4):541-56 [PMID: 13249947]
  48. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):E3395-404 [PMID: 25092300]
  49. FEBS Lett. 1997 Feb 3;402(2-3):124-30 [PMID: 9037180]
  50. Mol Aspects Med. 2015 Apr;42:105-18 [PMID: 25579745]
  51. J Bone Miner Res. 2006 Jul;21(7):1089-97 [PMID: 16813529]
  52. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15841-6 [PMID: 17898179]
  53. J Biol Chem. 2006 Sep 22;281(38):28131-42 [PMID: 16864583]
  54. Genes Dev. 2001 Mar 15;15(6):672-86 [PMID: 11274053]
  55. Front Endocrinol (Lausanne). 2022 Mar 01;13:821069 [PMID: 35299972]
  56. Homo. 2016 Oct;67(5):349-368 [PMID: 27650853]
  57. J Clin Endocrinol Metab. 2001 Sep;86(9):4151-60 [PMID: 11549642]
  58. ACS Chem Biol. 2014 Mar 21;9(3):683-91 [PMID: 24328449]
  59. Curr Diab Rep. 2022 Feb;22(2):85-94 [PMID: 35119630]
  60. Diabetes Obes Metab. 2018 Sep;20 Suppl 2:28-50 [PMID: 30230185]
  61. J Clin Invest. 1999 Jan;103(1):27-37 [PMID: 9884331]
  62. Genes Dev. 2003 Apr 1;17(7):826-31 [PMID: 12654724]
  63. Nat Struct Biol. 1995 Mar;2(3):211-7 [PMID: 7539710]
  64. J Biol Chem. 2002 Jan 4;277(1):310-7 [PMID: 11694508]
  65. Science. 1966 Dec 23;154(3756):1509-14 [PMID: 5332548]
  66. Diabetes Care. 1990 Jun;13(6):600-9 [PMID: 2192846]
  67. J Biol Chem. 2014 Aug 22;289(34):23683-92 [PMID: 25002580]
  68. J Biol Chem. 2003 May 16;278(20):17800-9 [PMID: 12624089]
  69. Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10347-50 [PMID: 22968928]
  70. FEBS Lett. 2013 Jun 27;587(13):1942-50 [PMID: 23669362]
  71. Proc Natl Acad Sci U S A. 1967 Feb;57(2):473-80 [PMID: 16591494]
  72. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4846-51 [PMID: 17360367]
  73. Biochemistry. 1995 Oct 31;34(43):13974-81 [PMID: 7577994]
  74. Cell Mol Life Sci. 2021 Aug;78(16):6017-6031 [PMID: 34245311]
  75. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29618-29628 [PMID: 33154160]
  76. Curr Opin Struct Biol. 1998 Apr;8(2):189-94 [PMID: 9631292]

Grants

  1. R01 DK040949/NIDDK NIH HHS

Word Cloud

Created with Highcharts 10.0.0proinsulinfoldingvariantsnativeproteininsulindiabetesERonsetpHdisulfideclinicalmutationssyndromevariantstressbiosynthesisrelativeageCyssegmentsunfoldedstudiesPurpose:Heterozygousgenecangiverisemonogenicduetoxicmisfoldingendoplasmicreticulumpancreatic��-cellsClinicalwidelydistributedsequence86aminoacidsMisfoldinginduceschronicinterfereswildtypesecretionpresentworksoughtstudyefficienciesrelationdiseaseMethods:enableefficientpreparationnon-foldabledevelopedfour-segmentchemical-ligationschemeexploitstwocysteinesresidues1971alanineconnectingdomainAlaresidue50N-Cterminusfourrespectivelengths18312215residues-convenient"mixmatch"syntheticplatformtechnologyResults:Foldingreducedpolypeptidesinvestigatedthreeconditions:106promotespairingpharmaceuticalmanufacture74absencepresence"foldase"isomeraseWhereaswild-typeefficientlyfoldsformsingledominantproductaccordanceclassicalexhibitedmarkedimpairmentespeciallyneutralConclusion:AmongrepresentativeyieldscorrelateddegreecellcultureagesneonataladolescenceadulthoodImplicationsmechanismnascentdiscussedSyntheticmutantdemonstratecorrelationefficiencybridgeproteotoxicityresponse

Similar Articles

Cited By

No available data.