Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ.

T Nash Skipper, Christian Hogrefe, Barron H Henderson, Rohit Mathur, Kristen M Foley, Armistead G Russell
Author Information
  1. T Nash Skipper: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  2. Christian Hogrefe: U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
  3. Barron H Henderson: U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
  4. Rohit Mathur: U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
  5. Kristen M Foley: U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
  6. Armistead G Russell: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Abstract

United States (US) background ozone (O) is the counterfactual O that would exist with zero US anthropogenic emissions. Estimates of US background O typically come from chemical transport models (CTMs), but different models vary in their estimates of both background and total O. Here, a measurement-model data fusion approach is used to estimate CTM biases in US anthropogenic O and multiple US background O sources, including natural emissions, long-range international emissions, short-range international emissions from Canada and Mexico, and stratospheric O. Spatially and temporally varying bias correction factors adjust each simulated O component so that the sum of the adjusted components evaluates better against observations compared to unadjusted estimates. The estimated correction factors suggest a seasonally consistent positive bias in US anthropogenic O in the eastern US, with the bias becoming higher with coarser model resolution and with higher simulated total O, though the bias does not increase much with higher observed O. Summer average US anthropogenic O in the eastern US was estimated to be biased high by 2, 7, and 11 ppb (11%, 32%, and 49%) for one set of simulations at 12, 36, and 108 km resolutions and 1 and 6 ppb (10% and 37%) for another set of simulations at 12 and 108 km resolutions. Correlation among different US background O components can increase the uncertainty in the estimation of the source-specific adjustment factors. Despite this, results indicate a negative bias in modeled estimates of the impact of stratospheric O at the surface, with a western US spring average bias of -3.5 ppb (-25%) estimated based on a stratospheric O tracer. This type of data fusion approach can be extended to include data from multiple models to leverage the strengths of different data sources while reducing uncertainty in the US background ozone estimates.

References

  1. Int J Wildland Fire. 2022 Jan 31;31(2):193-211 [PMID: 35875325]
  2. J Geophys Res Atmos. 2022 Aug 23;127(16):0 [PMID: 36275858]
  3. Environ Sci Technol. 2021 Apr 20;55(8):4504-4512 [PMID: 33724832]
  4. Nat Commun. 2015 May 12;6:7105 [PMID: 25964012]
  5. Atmos Chem Phys. 2020 Mar 23;20(6):3373-3396 [PMID: 32328089]
  6. Atmos Chem Phys. 2017;17:11107-11133 [PMID: 32038726]
  7. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6641-6646 [PMID: 30886090]
  8. Elementa (Wash D C). 2018;6(1):56 [PMID: 30364819]
  9. Atmos Chem Phys. 2018;18(5):3839-3864 [PMID: 30079085]
  10. Atmos Environ (1994). 2019;213:395-404 [PMID: 31320831]
  11. Data Brief. 2023 Mar 02;47:109022 [PMID: 36942100]
  12. Environ Sci Technol. 2023 Jan 24;57(3):1257-1267 [PMID: 36607321]
  13. Sci Total Environ. 2024 Mar 20;917:170406 [PMID: 38281631]
  14. Environ Sci Technol. 2013 Oct 1;47(19):11065-72 [PMID: 23980897]
  15. Geosci Model Dev. 2019 Jul 18;12(7):3071-3083 [PMID: 32206207]
  16. Atmos Chem Phys. 2017;17:12449-12474 [PMID: 29681922]
  17. Environ Sci Technol. 2011 Nov 15;45(22):9484-97 [PMID: 21985705]
  18. J Adv Model Earth Syst. 2022 Jun;14(6):e2021MS002889 [PMID: 35864945]
  19. Nat Sustain. 2020 Oct 5;N/A:1-57 [PMID: 33134558]
  20. Geosci Model Dev. 2021 May 20;14:2867-2897 [PMID: 34676058]
  21. Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12401-12406 [PMID: 30455309]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0OUSbackgroundbiasanthropogenicemissionsestimatesdataozonemodelsdifferentstratosphericcorrectionfactorsestimatedhigherppbtotalfusionapproachmultiplesourcesinternationalsimulatedcomponentseasternincreaseaveragesetsimulations12108kmresolutionscanuncertaintymodeledUnitedStatescounterfactualexistzeroEstimatestypicallycomechemicaltransportCTMsvarymeasurement-modelusedestimateCTMbiasesincludingnaturallong-rangeshort-rangeCanadaMexicoSpatiallytemporallyvaryingadjustcomponentsumadjustedevaluatesbetterobservationscomparedunadjustedsuggestseasonallyconsistentpositivebecomingcoarsermodelresolutionthoughmuchobservedSummerbiasedhigh271111%32%49%one361610%37%anotherCorrelationamongestimationsource-specificadjustmentDespiteresultsindicatenegativeimpactsurfacewesternspring-35-25%basedtracertypeextendedincludeleveragestrengthsreducingSource-specificCMAQ

Similar Articles

Cited By