Impact of light and nutrient availability on the phagotrophic activity of harmful bloom-forming dinoflagellates.

Catalina Mena, Marc Long, Ophélie Lorand, Pascale Malestroit, Emilie Rabiller, Jean-François Maguer, Stéphane L'helguen, Aurore Regaudie De Gioux
Author Information
  1. Catalina Mena: Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France. ORCID
  2. Marc Long: Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
  3. Ophélie Lorand: Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
  4. Pascale Malestroit: Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
  5. Emilie Rabiller: Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
  6. Jean-François Maguer: University of Brest, CNRS, IRD, IFREMER, Laboratoire des sciences de l'environnement marin (LEMAR), F-29280 Plouzané, France.
  7. Stéphane L'helguen: University of Brest, CNRS, IRD, IFREMER, Laboratoire des sciences de l'environnement marin (LEMAR), F-29280 Plouzané, France.
  8. Aurore Regaudie De Gioux: Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.

Abstract

Phagotrophy is a key nutritional mode for many bloom-forming dinoflagellates that can supplement their carbon and nutrient requirements. However, the environmental drivers and ecological relevance of phagotrophy in algal blooms are still poorly understood. This study evaluates the effect of light and nutrient availability on the phagotrophic activity of three common bloom-forming dinoflagellates (, and ) using three fluorescently labeled preys: bacteria, and the haptophyte . The three dinoflagellates exhibited distinct responses to light and nutrient availability in terms of growth, cell size, prey ingestion and preference. and showed higher cell-specific ingestion rates on bacteria (0.53 ± 0.13 and 1.64 ± 0.39 prey dinoflagellate h, respectively) under co-limited nutrient and light availability, whereas showed higher ingestion on (0.93 ± 0.22 prey dinoflagellate h) under low-light availability alone. However, the three dinoflagellates exhibited the highest carbon and nitrogen-specific ingestion rates when feeding on the larger prey . Our findings indicate that phagotrophy could be of advantage in short periods of light or nutrient limitation and may play different roles during the development of blooms, likely influencing the energy transfer through the food web.

Keywords

References

  1. Appl Environ Microbiol. 1988 May;54(5):1091-5 [PMID: 16347623]
  2. ISME J. 2021 Jul;15(7):1987-2000 [PMID: 33649548]
  3. Front Microbiol. 2022 Apr 19;13:805306 [PMID: 35516439]
  4. Front Microbiol. 2017 Jul 26;8:1398 [PMID: 28798734]
  5. Ann Rev Mar Sci. 2014;6:167-94 [PMID: 24079309]
  6. Sci Rep. 2017 Aug 8;7(1):7622 [PMID: 28790307]
  7. FEMS Microbiol Ecol. 2012 Nov;82(2):242-53 [PMID: 22092954]
  8. Environ Microbiol. 2010 Jul;12(7):1913-25 [PMID: 20345945]
  9. J Eukaryot Microbiol. 2023 Jul-Aug;70(4):e12972 [PMID: 36847544]
  10. Sci Rep. 2023 Apr 27;13(1):6900 [PMID: 37106077]
  11. Harmful Algae. 2018 Mar;73:98-109 [PMID: 29602510]
  12. J Eukaryot Microbiol. 2015 Jul-Aug;62(4):431-43 [PMID: 25510417]
  13. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3): [PMID: 33431666]
  14. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2958-63 [PMID: 26831076]
  15. Microorganisms. 2023 Jul 01;11(7): [PMID: 37512902]
  16. Proc Biol Sci. 2008 Dec 7;275(1652):2733-41 [PMID: 18713720]
  17. J Eukaryot Microbiol. 2011 May-Jun;58(3):203-14 [PMID: 21435078]
  18. Harmful Algae. 2020 Mar;93:101775 [PMID: 32307067]
  19. Microb Ecol. 2009 Oct;58(3):548-57 [PMID: 19655080]
  20. Front Microbiol. 2018 Jul 31;9:1704 [PMID: 30108563]
  21. Environ Pollut. 2018 Nov;242(Pt B):1598-1605 [PMID: 30072219]
  22. Microb Ecol. 2020 Jan;79(1):64-72 [PMID: 31147731]
  23. Sci Adv. 2021 Jan 8;7(2): [PMID: 33523999]
  24. New Phytol. 2022 May;234(3):990-1002 [PMID: 35179778]
  25. Protist. 2016 Apr;167(2):106-20 [PMID: 26927496]
  26. Ann Rev Mar Sci. 2017 Jan 3;9:311-335 [PMID: 27483121]
  27. Bioresour Technol. 2014 Oct;169:588-595 [PMID: 25103036]
  28. Front Microbiol. 2020 Sep 30;11:542372 [PMID: 33101224]
  29. Ecol Lett. 2017 Feb;20(2):246-263 [PMID: 28032461]
  30. Environ Microbiol. 2017 Apr;19(4):1568-1583 [PMID: 28139885]
  31. Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190090 [PMID: 31587652]
  32. Harmful Algae. 2021 Mar;103:101997 [PMID: 33980437]
  33. ISME J. 2012 Oct;6(10):1926-36 [PMID: 22513533]
  34. Harmful Algae. 2022 Aug;117:102292 [PMID: 35944956]
  35. Appl Environ Microbiol. 1987 May;53(5):958-65 [PMID: 16347355]
  36. Environ Microbiol. 2006 Sep;8(9):1515-22 [PMID: 16913912]

Word Cloud

Created with Highcharts 10.0.0nutrientdinoflagellateslightavailabilitybloom-formingthreepreyingestionphagotrophylimitationcarbonHoweverbloomsphagotrophicactivitybacteriaexhibitedshowedhigherrates0dinoflagellate hPhagotrophykeynutritionalmodemanycansupplementrequirementsenvironmentaldriversecologicalrelevancealgalstillpoorlyunderstoodstudyevaluateseffectcommonusingfluorescentlylabeledpreys:haptophytedistinctresponsestermsgrowthcellsizepreferencecell-specific53 ± 013164 ± 039respectivelyco-limitedwhereas93 ± 022low-lightalonehighestnitrogen-specificfeedinglargerfindingsindicateadvantageshortperiodsmayplaydifferentrolesdevelopmentlikelyinfluencingenergytransferfoodwebImpactharmfulmixotrophy

Similar Articles

Cited By