Phase-amplitude coupling during auditory steady-state stimulation: a methodological review.

Aurimas Mockevičius, Inga Griškova-Bulanova
Author Information
  1. Aurimas Mockevičius: Institute of Bioscience, Life Sciences Center, 54694 Vilnius University , Saulėtekio ave. 7, LT-10257, Vilnius, Lithuania. ORCID
  2. Inga Griškova-Bulanova: Institute of Bioscience, Life Sciences Center, 54694 Vilnius University , Saulėtekio ave. 7, LT-10257, Vilnius, Lithuania. ORCID

Abstract

Auditory steady-state response (ASSR) is a robust method to probe gamma (>30 Hz) activity in a controlled manner. While typically the magnitude and the phase synchronization over stimulus repetitions of ASSR is assessed, other measures are being investigated. One of them is phase-amplitude coupling (PAC), which reflects the interactions between lower frequency phase and higher frequency amplitude. Considering that the number of studies assessing PAC during auditory steady-state stimulation has grown recently, in the present work, we aimed to perform a comprehensive overview of PAC methodological approaches in ASSR studies. We sought to evaluate the studies according to PAC analysis issues emphasized in empirical and theoretical PAC studies. Our work showed considerable variability in the methodology among the reviewed studies. Furthermore, the reviewed works address methodological issues and confounding factors of PAC relatively poorly and are characterized by insufficient descriptions of the applied approaches. Our review shows that systematic research of PAC in the context of ASSR is imperative in order to properly evaluate the presence of PAC during the auditory steady-state stimulation.

Keywords

References

  1. Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., Singer, W., and Vicente, R. (2015). Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31: 51–61, https://doi.org/10.1016/j.conb.2014.08.002 . [DOI: 10.1016/j.conb.2014.08.002]
  2. Berman, J.I., Liu, S., Bloy, L., Blaskey, L., Roberts, T.P.L., and Edgar, J.C. (2015). Alpha-to-Gamma phase-amplitude coupling methods and application to autism spectrum disorder. Brain Connect. 5: 80–90.
  3. Borderie, A., Caclin, A., Lachaux, J.-P., Perrone-Bertollotti, M., Hoyer, R.S., Kahane, P., Catenoix, H., Tillmann, B., and Albouy, P. (2024). Cross-frequency coupling in cortico-hippocampal networks supports the maintenance of sequential auditory information in short-term memory. PLOS Biol. 22: e3002512, https://doi.org/10.1371/journal.pbio.3002512 . [DOI: 10.1371/journal.pbio.3002512]
  4. Brenner, C.A., Krishnan, G.P., Vohs, J.L., Ahn, W.-Y., Hetrick, W.P., Morzorati, S.L., and O’Donnell, B.F. (2009). Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr. Bull. 35: 1065–1077, https://doi.org/10.1093/schbul/sbp091 . [DOI: 10.1093/schbul/sbp091]
  5. Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger, M.S., Barbaro, N.M., and Knight, R.T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626–1628, https://doi.org/10.1126/science.1128115 . [DOI: 10.1126/science.1128115]
  6. Canolty, R.T. and Knight, R.T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14: 506–515, https://doi.org/10.1016/j.tics.2010.09.001 . [DOI: 10.1016/j.tics.2010.09.001]
  7. Cho, R.Y., Walker, C.P., Polizzotto, N.R., Wozny, T.A., Fissell, C., Chen, C.-M.A., and Lewis, D.A. (2015). Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood. Cereb. Cortex. 25: 1509–1518, https://doi.org/10.1093/cercor/bht341 . [DOI: 10.1093/cercor/bht341]
  8. Cohen, M.X., Elger, C.E., and Fell, J. (2008). Oscillatory activity and phase–amplitude coupling in the human medial frontal cortex during decision making. J. Cogn. Neurosci. 21: 390–402, https://doi.org/10.1162/jocn.2008.21020 . [DOI: 10.1162/jocn.2008.21020]
  9. Combrisson, E., Nest, T., Brovelli, A., Ince, R.A.A., Soto, J.L.P., Guillot, A., and Jerbi, K. (2020). Tensorpac: an open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Comput. Biol. 16: e1008302, https://doi.org/10.1371/journal.pcbi.1008302 . [DOI: 10.1371/journal.pcbi.1008302]
  10. Daume, J., Gruber, T., Engel, A.K., and Friese, U. (2017). Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J. Neurosci. 37: 313–322, https://doi.org/10.1523/jneurosci.2130-16.2016 . [DOI: 10.1523/jneurosci.2130-16.2016]
  11. de Hemptinne, C., Ryapolova-Webb, E.S., Air, E.L., Garcia, P.A., Miller, K.J., Ojemann, J.G., Ostrem, J.L., Galifianakis, N.B., and Starr, P.A. (2013). Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. 110: 4780–4785, https://doi.org/10.1073/pnas.1214546110 . [DOI: 10.1073/pnas.1214546110]
  12. de la Salle, S., Choueiry, J., Payumo, M., Devlin, M., Noel, C., Abozmal, A., Hyde, M., Baysarowich, R., Duncan, B., and Knott, V. (2024). Transcranial alternating current stimulation alters auditory steady-state oscillatory rhythms and their cross-frequency couplings. Clin. EEG Neurosci. 55: 329–339, https://doi.org/10.1177/15500594231179679 . [DOI: 10.1177/15500594231179679]
  13. De Ridder, D., Vanneste, S., Langguth, B., and Llinas, R. (2015). Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front. Neurol. 6: 124, https://doi.org/10.3389/fneur.2015.00124 . [DOI: 10.3389/fneur.2015.00124]
  14. Dvorak, D. and Fenton, A.A. (2014). Toward a proper estimation of phase–amplitude coupling in neural oscillations. J. Neurosci. Methods. 225: 42–56, https://doi.org/10.1016/j.jneumeth.2014.01.002 . [DOI: 10.1016/j.jneumeth.2014.01.002]
  15. Gerber, E.M., Sadeh, B., Ward, A., Knight, R.T., and Deouell, L.Y. (2016). Non-sinusoidal activity can produce cross-frequency coupling in cortical signals in the absence of functional interaction between neural sources. PLoS ONE 11: e0167351, https://doi.org/10.1371/journal.pone.0167351 . [DOI: 10.1371/journal.pone.0167351]
  16. Gohel, B., Lim, S., Kim, M.-Y., An, K., Kim, J.-E., Kwon, H., and Kim, K. (2016). Evaluation of phase-amplitude coupling in resting state magnetoencephalographic signals: effect of surrogates and evaluation approach. Front. Comput. Neurosci. 10: 120, https://doi.org/10.3389/fncom.2016.00120 . [DOI: 10.3389/fncom.2016.00120]
  17. Grent-’t-Jong, T., Brickwedde, M., Metzner, C., and Uhlhaas, P.J. (2023). 40-Hz auditory steady-state responses in schizophrenia: toward a mechanistic biomarker for circuit dysfunctions and early detection and diagnosis. Biol. Psychiatry 94: 550–560, https://doi.org/10.1016/j.biopsych.2023.03.026 . [DOI: 10.1016/j.biopsych.2023.03.026]
  18. Griskova-Bulanova, I., Dapsys, K., Melynyte, S., Voicikas, A., Maciulis, V., Andruskevicius, S., and Korostenskaja, M. (2018). 40Hz auditory steady-state response in schizophrenia: sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones). Neurosci. Lett. 662: 152–157, https://doi.org/10.1016/j.neulet.2017.10.025 . [DOI: 10.1016/j.neulet.2017.10.025]
  19. Griskova-Bulanova, I., Hubl, D., van Swam, C., Dierks, T., and Koenig, T. (2016). Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: does hallucination status matter? Clin. Neurophysiol. 127: 2214–2221, https://doi.org/10.1016/j.clinph.2016.02.009 . [DOI: 10.1016/j.clinph.2016.02.009]
  20. Hirano, S., Nakhnikian, A., Hirano, Y., Oribe, N., Kanba, S., Onitsuka, T., Levin, M., and Spencer, K.M. (2018). Phase-amplitude coupling of the electroencephalogram in the auditory cortex in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 3: 69–76, https://doi.org/10.1016/j.bpsc.2017.09.001 . [DOI: 10.1016/j.bpsc.2017.09.001]
  21. Hirano, Y., Oribe, N., Kanba, S., Onitsuka, T., Nestor, P.G., and Spencer, K.M. (2015). Spontaneous gamma activity in schizophrenia. JAMA psychiatry 72: 813–821, https://doi.org/10.1001/jamapsychiatry.2014.2642 . [DOI: 10.1001/jamapsychiatry.2014.2642]
  22. Hülsemann, M.J., Naumann, E., and Rasch, B. (2019). Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front. Neurosci. 13: 573, https://doi.org/10.3389/fnins.2019.00573 . [DOI: 10.3389/fnins.2019.00573]
  23. Hyafil, A., Fontolan, L., Kabdebon, C., Gutkin, B., and Giraud, A.-L. (2015). Speech encoding by coupled cortical theta and gamma oscillations. eLife 4: e06213, https://doi.org/10.7554/elife.06213 . [DOI: 10.7554/elife.06213]
  24. Inaba, H., Kai, R., Namba, H., Sotoyama, H., Jodo, E., Nin, F., Hibino, H., Yabe, H., Eifuku, S., Horii, A., et al.. (2021). Perinatal epidermal growth factor signal perturbation results in the series of abnormal auditory oscillations and responses relevant to schizophrenia. Schizophr. Bull. Open 2: sgaa070, https://doi.org/10.1093/schizbullopen/sgaa070 . [DOI: 10.1093/schizbullopen/sgaa070]
  25. Isomura, S., Onitsuka, T., Tsuchimoto, R., Nakamura, I., Hirano, S., Oda, Y., Oribe, N., Hirano, Y., Ueno, T., and Kanba, S. (2016). Differentiation between major depressive disorder and bipolar disorder by auditory steady-state responses. J. Affect. Disord. 190: 800–806, https://doi.org/10.1016/j.jad.2015.11.034 . [DOI: 10.1016/j.jad.2015.11.034]
  26. Jensen, O., Spaak, E., and Park, H. (2016). Discriminating valid from spurious indices of phase-amplitude coupling. eNeuro 3, https://doi.org/10.1523/eneuro.0334-16.2016 . [DOI: 10.1523/eneuro.0334-16.2016]
  27. Jones, K.T., Johnson, E.L., Tauxe, Z.S., and Rojas, D.C. (2020). Modulation of auditory gamma-band responses using transcranial electrical stimulation. J. Neurophysiol. 123: 2504–2514, https://doi.org/10.1152/jn.00003.2020 . [DOI: 10.1152/jn.00003.2020]
  28. Kirihara, K., Rissling, A.J., Swerdlow, N.R., Braff, D.L., and Light, G.A. (2012). Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol. Psychiatry. 71: 873–880, https://doi.org/10.1016/j.biopsych.2012.01.016 . [DOI: 10.1016/j.biopsych.2012.01.016]
  29. Kramer, M.A. and Eden, U.T. (2013). Assessment of cross-frequency coupling with confidence using generalized linear models. J. Neurosci. Methods 220: 64–74, https://doi.org/10.1016/j.jneumeth.2013.08.006 . [DOI: 10.1016/j.jneumeth.2013.08.006]
  30. Kramer, M.A., Tort, A.B.L., and Kopell, N.J. (2008). Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. J. Neurosci. Methods 170: 352–357, https://doi.org/10.1016/j.jneumeth.2008.01.020 . [DOI: 10.1016/j.jneumeth.2008.01.020]
  31. Lizarazu, M., Carreiras, M., and Molinaro, N. (2023). Theta-gamma phase-amplitude coupling in auditory cortex is modulated by language proficiency. Hum. Brain Mapp. 44: 2862–2872, https://doi.org/10.1002/hbm.26250 . [DOI: 10.1002/hbm.26250]
  32. Lizarazu, M., Lallier, M., and Molinaro, N. (2019). Phase-amplitude coupling between theta and gamma oscillations adapts to speech rate. Ann. N. Y. Acad. Sci. 1453: 140–152, https://doi.org/10.1111/nyas.14099 . [DOI: 10.1111/nyas.14099]
  33. Lozano-Soldevilla, D., Ter Huurne, N., and Oostenveld, R. (2016). Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 10: 87, https://doi.org/10.3389/fncom.2016.00087 . [DOI: 10.3389/fncom.2016.00087]
  34. Mancini, V., Rochas, V., Seeber, M., Roehri, N., Rihs, T.A., Ferat, V., Schneider, M., Uhlhaas, P.J., Eliez, S., and Michel, C.M. (2022). Aberrant developmental patterns of gamma-band response and long-range communication disruption in youths with 22q11.2 deletion syndrome. Am. J. Psychiatry 179: 204–215, https://doi.org/10.1176/appi.ajp.2021.21020190 . [DOI: 10.1176/appi.ajp.2021.21020190]
  35. McFadden, K.L., Steinmetz, S.E., Carroll, A.M., Simon, S.T., Wallace, A., and Rojas, D.C. (2014). Test-retest reliability of the 40 Hz EEG auditory steady-state response. PLoS ONE 9: e85748, https://doi.org/10.1371/journal.pone.0085748 . [DOI: 10.1371/journal.pone.0085748]
  36. Murphy, N., Ramakrishnan, N., Walker, C.P., Polizzotto, N.R., and Cho, R.Y. (2020). Intact auditory cortical cross-frequency coupling in early and chronic schizophrenia. Front. Psychiatry 11: 507, https://doi.org/10.3389/fpsyt.2020.00507 . [DOI: 10.3389/fpsyt.2020.00507]
  37. O’Connell, M.N., Barczak, A., Ross, D., McGinnis, T., Schroeder, C.E., and Lakatos, P. (2015). Multi-scale entrainment of coupled neuronal oscillations in primary auditory cortex. Front. Hum. Neurosci. 9: 655, https://doi.org/10.3389/fnhum.2015.00655 . [DOI: 10.3389/fnhum.2015.00655]
  38. Onslow, A.C.E., Bogacz, R., and Jones, M.W. (2011). Quantifying phase-amplitude coupling in neuronal network oscillations. Prog. Biophys. Mol. Biol. 105: 49–57, https://doi.org/10.1016/j.pbiomolbio.2010.09.007 . [DOI: 10.1016/j.pbiomolbio.2010.09.007]
  39. Özkurt, T.E. and Schnitzler, A. (2011). A critical note on the definition of phase-amplitude cross-frequency coupling. J. Neurosci. Methods 201: 438–443, https://doi.org/10.1016/j.jneumeth.2011.08.014 . [DOI: 10.1016/j.jneumeth.2011.08.014]
  40. Parciauskaite, V., Bjekic, J., and Griskova-Bulanova, I. (2021). Gamma-range auditory steady-state responses and cognitive performance: a systematic review. Brain Sci. 11: 217, https://doi.org/10.3390/brainsci11020217 . [DOI: 10.3390/brainsci11020217]
  41. Penny, W.D., Duzel, E., Miller, K.J., and Ojemann, J.G. (2008). Testing for nested oscillation. J. Neurosci. Methods 174: 50–61, https://doi.org/10.1016/j.jneumeth.2008.06.035 . [DOI: 10.1016/j.jneumeth.2008.06.035]
  42. Port, R.G., Gajewski, C., Krizman, E., Dow, H.C., Hirano, S., Brodkin, E.S., Carlson, G.C., Robinson, M.B., Roberts, T.P.L., and Siegel, S.J. (2017). Protocadherin 10 alters γ oscillations, amino acid levels, and their coupling; baclofen partially restores these oscillatory deficits. Neurobiol. Dis. 108: 324–338, https://doi.org/10.1016/j.nbd.2017.08.013 . [DOI: 10.1016/j.nbd.2017.08.013]
  43. Roach, B.J., D’Souza, D.C., Ford, J.M., and Mathalon, D.H. (2019). Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. NeuroImage Clin. 23: 101878, https://doi.org/10.1016/j.nicl.2019.101878 . [DOI: 10.1016/j.nicl.2019.101878]
  44. Samiee, S. and Baillet, S. (2017). Time-resolved phase-amplitude coupling in neural oscillations. NeuroImage 159: 270–279, https://doi.org/10.1016/j.neuroimage.2017.07.051 . [DOI: 10.1016/j.neuroimage.2017.07.051]
  45. Scherer, M., Wang, T., Guggenberger, R., Milosevic, L., and Gharabaghi, A. (2023). Direct modulation index: a measure of phase amplitude coupling for neurophysiology data. Hum. Brain Mapp. 44: 1862–1867, https://doi.org/10.1002/hbm.26190 . [DOI: 10.1002/hbm.26190]
  46. Seymour, R.A., Rippon, G., and Kessler, K. (2017). The detection of phase amplitude coupling during sensory processing. Front. Neurosci. 11: 487, https://doi.org/10.3389/fnins.2017.00487 . [DOI: 10.3389/fnins.2017.00487]
  47. Spencer, K.M. (2012). Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Hum. Neurosci. 5: 190, https://doi.org/10.3389/fnhum.2011.00190 . [DOI: 10.3389/fnhum.2011.00190]
  48. Sugiyama, S., Ohi, K., Kuramitsu, A., Takai, K., Muto, Y., Taniguchi, T., Kinukawa, T., Takeuchi, N., Motomura, E., Nishihara, M., et al.. (2021). The auditory steady-state response: electrophysiological index for sensory processing dysfunction in psychiatric disorders. Front. Psychiatry 12: 644541, https://doi.org/10.3389/fpsyt.2021.644541 . [DOI: 10.3389/fpsyt.2021.644541]
  49. Tada, M., Kirihara, K., Koshiyama, D., Nagai, T., Fujiouka, M., Usui, K., Satomura, Y., Koike, S., Sawada, K., Matsuoka, J., et al.. (2023). Alterations of auditory-evoked gamma oscillations are more pronounced than alterations of spontaneous power of gamma oscillation in early stages of schizophrenia. Transl. Psychiatry 13: 218, https://doi.org/10.1038/s41398-023-02511-5 . [DOI: 10.1038/s41398-023-02511-5]
  50. Tort, A.B.L., Komorowski, R., Eichenbaum, H., and Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104: 1195–1210, https://doi.org/10.1152/jn.00106.2010 . [DOI: 10.1152/jn.00106.2010]
  51. van Driel, J., Cox, R., and Cohen, M.X. (2015). Phase-clustering bias in phase–amplitude cross-frequency coupling and its removal. J. Neurosci. Methods 254: 60–72, https://doi.org/10.1016/j.jneumeth.2015.07.014 . [DOI: 10.1016/j.jneumeth.2015.07.014]
  52. Voytek, B., Canolty, R.T., Shestyuk, A., Crone, N., Parvizi, J., and Knight, R.T. (2010). Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci. 4: 191, https://doi.org/10.3389/fnhum.2010.00191 . [DOI: 10.3389/fnhum.2010.00191]
  53. Voytek, B., D’Esposito, M., Crone, N., and Knight, R.T. (2013). A method for event-related phase/amplitude coupling. NeuroImage 64: 416–424, https://doi.org/10.1016/j.neuroimage.2012.09.023 . [DOI: 10.1016/j.neuroimage.2012.09.023]
  54. Wang, S., Li, C., Liu, Y., Wang, M., Lin, M., Yang, L., Chen, Y., Wang, Y., Fu, X., Zhang, X., et al.. (2023). Features of beta-gamma phase-amplitude coupling in cochlear implant users derived from EEG. Hear. Res. 428: 108668, https://doi.org/10.1016/j.heares.2022.108668 . [DOI: 10.1016/j.heares.2022.108668]
  55. Won, G.H., Kim, J.W., Choi, T.Y., Lee, Y.S., Min, K.J., and Seol, K.H. (2018). Theta-phase gamma-amplitude coupling as a neurophysiological marker in neuroleptic-naïve schizophrenia. Psychiatry Res. 260: 406–411, https://doi.org/10.1016/j.psychres.2017.12.021 . [DOI: 10.1016/j.psychres.2017.12.021]
  56. Zhang, W., Liu, W., Liu, S., Su, F., Kang, X., Ke, Y., and Ming, D. (2023a). Altered fronto-central theta-gamma coupling in major depressive disorder during auditory steady-state responses. Clin. Neurophysiol. 146: 65–76, https://doi.org/10.1016/j.clinph.2022.11.013 . [DOI: 10.1016/j.clinph.2022.11.013]
  57. Zhang, W., Liu, W., Liu, X., Liu, S., and Ming, D. (2023b). Altered lateralization of gamma oscillations and theta-gamma coupling in major depression: an EEG study. Proc. 2022 9th Int. Conf. Biomed. Bioinform. Eng. 203–208, https://doi.org/10.1145/3574198.3574230 . [DOI: 10.1145/3574198.3574230]

Word Cloud

Created with Highcharts 10.0.0PACsteady-stateASSRstudiescouplingauditorymethodologicalresponsephasephase-amplitudefrequencystimulationworkapproachesevaluateissuesreviewedreviewAuditoryrobustmethodprobegamma>30 HzactivitycontrolledmannertypicallymagnitudesynchronizationstimulusrepetitionsassessedmeasuresinvestigatedOnereflectsinteractionslowerhigheramplitudeConsideringnumberassessinggrownrecentlypresentaimedperformcomprehensiveoverviewsoughtaccordinganalysisemphasizedempiricaltheoreticalshowedconsiderablevariabilitymethodologyamongFurthermoreworksaddressconfoundingfactorsrelativelypoorlycharacterizedinsufficientdescriptionsappliedshowssystematicresearchcontextimperativeorderproperlypresencePhase-amplitudestimulation:cross-frequencyEEGMEG

Similar Articles

Cited By

No available data.