Bayesian covariance regression in functional data analysis with applications to functional brain imaging.

John Shamshoian, Nicholas Marco, Damla Şentürk, Shafali Jeste, Donatello Telesca
Author Information
  1. John Shamshoian: Department of Biostatistics, University of California, Los Angeles, CA, USA.
  2. Nicholas Marco: Department of Biostatistics, University of California, Los Angeles, CA, USA.
  3. Damla Şentürk: Department of Biostatistics, University of California, Los Angeles, CA, USA.
  4. Shafali Jeste: Division of Neurology and Neurological Institute, Children's Hospital Los Angeles, Los Angeles, USA.
  5. Donatello Telesca: Department of Biostatistics, University of California, Los Angeles, CA, USA.

Abstract

Function on scalar regression models relate functional outcomes to scalar predictors through the conditional mean function. With few and limited exceptions, many functional regression frameworks operate under the assumption that covariate information does not affect patterns of covariation. In this manuscript, we address this disparity by developing a Bayesian functional regression model, providing joint inference for both the conditional mean and covariance functions. Our work hinges on basis expansions of both the functional evaluation domain and covariate space, to define flexible non-parametric forms of dependence. To aid interpretation, we develop novel low-dimensional summaries, which indicate the degree of covariate-dependent heteroskedasticity. The proposed modeling framework is motivated and applied to a case study in functional brain imaging through electroencephalography, aiming to elucidate potential differentiation in the neural development of children with autism spectrum disorder.

Keywords

References

  1. Wang, J-L, Chiou, J-M, Müller, H-G. Functional data analysis. Annu Rev Stat Appl 2016;3:257–95. https://doi.org/10.1146/annurev-statistics-041715-033624 . [DOI: 10.1146/annurev-statistics-041715-033624]
  2. Goldsmith, J, Zipunnikov, V, Schrack, J. Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 2015;71:344–53. https://doi.org/10.1111/biom.12278 . [DOI: 10.1111/biom.12278]
  3. Greven, S, Scheipl, F. A general framework for functional regression modelling. Stat Model Int J 2017;17:1–35. https://doi.org/10.1177/1471082x16681317 . [DOI: 10.1177/1471082x16681317]
  4. Baladandayuthapani, V, Mallick, BK, Young Hong, M, Lupton, JR, Turner, ND, Carroll, RJ. Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 2008;64:64–73. https://doi.org/10.1111/j.1541-0420.2007.00846.x . [DOI: 10.1111/j.1541-0420.2007.00846.x]
  5. Staicu, A-M, Crainiceanu, CM, Carroll, RJ. Fast methods for spatially correlated multilevel functional data. Biostatistics 2010;11:177–94. https://doi.org/10.1093/biostatistics/kxp058 . [DOI: 10.1093/biostatistics/kxp058]
  6. Greven, S, Crainiceanu, C, Caffo, B, Reich, D. Longitudinal functional principal component analysis. In: Recent advances in functional data analysis and related topics . Springer; 2011:149–54 pp.
  7. Park, SY, Staicu, A-M. Longitudinal functional data analysis. Stat 2015;4:212–26. https://doi.org/10.1002/sta4.89 . [DOI: 10.1002/sta4.89]
  8. Scheffler, A, Telesca, D, Li, Q, Sugar, CA, Distefano, C, Jeste, S, et al.. Hybrid principal components analysis for region-referenced longitudinal functional eeg data. Biostatistics 2020;21:139–57. https://doi.org/10.1093/biostatistics/kxy034 . [DOI: 10.1093/biostatistics/kxy034]
  9. Cardot, H. Conditional functional principal components analysis. Scand J Stat 2007;34:317–35. https://doi.org/10.1111/j.1467-9469.2006.00521.x . [DOI: 10.1111/j.1467-9469.2006.00521.x]
  10. Jiang, C-R, Wang, J-L. Covariate adjusted functional principal components analysis for longitudinal data. Ann Stat 2010;38:1194–226. https://doi.org/10.1214/09-aos742 . [DOI: 10.1214/09-aos742]
  11. Zhang, C, Lin, H, Liu, L, Liu, J, Li, Y. Functional data analysis with covariate-dependent mean and covariance structures. Biometrics 2023;79:2232–45. https://doi.org/10.1111/biom.13744 . [DOI: 10.1111/biom.13744]
  12. Xiao, L, Huang, L, Schrack, JA, Ferrucci, L, Zipunnikov, V, Crainiceanu, CM. Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach. Biostatistics 2015;16:352–67. https://doi.org/10.1093/biostatistics/kxu045 . [DOI: 10.1093/biostatistics/kxu045]
  13. Scheffler, AW, Dickinson, A, DiStefano, C, Jeste, S, Şentürk, D. Covariate-adjusted hybrid principal components analysis. In: International conference on information processing and management of uncertainty in knowledge-based systems . Springer; 2020:391–404 pp.
  14. Nolan, TH, Goldsmith, J, Ruppert, D. Bayesian functional principal components analysis via variational message passing with multilevel extensions. Bayesian Anal 2023;1:1–27.
  15. Whaba, G. Bayesian confidence intervals for the cross-validate smoothing spline. J Roy Stat Soc B 1983;45:133–50.
  16. Hoff, PD, Niu, X. A covariance regression model. Stat Sin 2012:729–53. https://doi.org/10.5705/ss.2010.051 . [DOI: 10.5705/ss.2010.051]
  17. Fox, EB, Dunson, DB. Bayesian nonparametric covariance regression. J Mach Learn Res 2015;16:2501–42.
  18. Flury, BN. Common principal components in k groups. J Am Stat Assoc 1984;79:892–8. https://doi.org/10.2307/2288721 . [DOI: 10.2307/2288721]
  19. Franks, AM, Hoff, P. Shared subspace models for multi-group covariance estimation. J Mach Learn Res 2019;20:1–37.
  20. Dickinson, A, DiStefano, C, Senturk, D, Jeste, SS. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. Eur J Neurosci 2018;47:643–51. https://doi.org/10.1111/ejn.13645 . [DOI: 10.1111/ejn.13645]
  21. Bonnefond, M, Kastner, S, Jensen, O. Communication between brain areas based on nested oscillations. eNeuro 2017;4. https://doi.org/10.1523/eneuro.0153-16.2017 . [DOI: 10.1523/eneuro.0153-16.2017]
  22. Rodríguez-Martínez, EI, Ruiz-Martínez, FJ, Paulino, CIB, Gómez, CM. Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood. Cogn Neurodyn 2017;11:23–33. https://doi.org/10.1007/s11571-016-9402-4 . [DOI: 10.1007/s11571-016-9402-4]
  23. Marco, N, Şentürk, D, Jeste, S, DiStefano, C, Dickinson, A, Telesca, D. Functional mixed membership models. arXiv preprint arXiv:2206.12084 2022.
  24. Scheipl, F, Staicu, A-M, Greven, S. Functional additive mixed models. J Comput Graph Stat 2015;24:477–501. https://doi.org/10.1080/10618600.2014.901914 . [DOI: 10.1080/10618600.2014.901914]
  25. Ruppert, D. Selecting the number of knots for penalized splines. J Comput Graph Stat 2002;11:735–57. https://doi.org/10.1198/106186002853 . [DOI: 10.1198/106186002853]
  26. Lang, S, Brezger, A. Bayesian p-splines. J Comput Graph Stat 2004;13:183–212. https://doi.org/10.1198/1061860043010 . [DOI: 10.1198/1061860043010]
  27. Wood, SN. Generalized additive models: an introduction with R . Boca Raton, FL: CRC Press; 2017.
  28. Kowal, DR, Bourgeois, DC. Bayesian function-on-scalars regression for high-dimensional data. J Comput Graph Stat 2020:1–10. https://doi.org/10.1080/10618600.2019.1710837 . [DOI: 10.1080/10618600.2019.1710837]
  29. Bhattacharya, A, Dunson, DB. Sparse bayesian infinite factor models. Biometrika 2011:291–306. https://doi.org/10.1093/biomet/asr013 . [DOI: 10.1093/biomet/asr013]
  30. Montagna, S, Tokdar, ST, Neelon, B, Dunson, DB. Bayesian latent factor regression for functional and longitudinal data. Biometrics 2012;68:1064–73. https://doi.org/10.1111/j.1541-0420.2012.01788.x . [DOI: 10.1111/j.1541-0420.2012.01788.x]
  31. Li, Q, Shamshoian, J, Şentürk, D, Sugar, C, Jeste, S, DiStefano, C, et al.. Region-referenced spectral power dynamics of eeg signals: a hierarchical modeling approach. Ann Appl Stat 2020;14:2053. https://doi.org/10.1214/20-aoas1374 . [DOI: 10.1214/20-aoas1374]
  32. Suarez, AJ, Ghosal, S. Bayesian estimation of principal components for functional data. Bayesian Anal 2017;12:311–33. https://doi.org/10.1214/16-ba1003 . [DOI: 10.1214/16-ba1003]
  33. Aguilera, AM, Aguilera-Morillo, MC. Penalized pca approaches for b-spline expansions of smooth functional data. Appl Math Comput 2013;219:7805–19. https://doi.org/10.1016/j.amc.2013.02.009 . [DOI: 10.1016/j.amc.2013.02.009]
  34. Krivobokova, T, Kneib, T, Claeskens, G. Simultaneous confidence bands for penalized spline estimators. J Am Stat Assoc 2010;105:852–63. https://doi.org/10.1198/jasa.2010.tm09165 . [DOI: 10.1198/jasa.2010.tm09165]
  35. Fifth Edition . Diagnostic and statistical manual of mental disorders. Am Psychiatr Assoc 2013;21:591–643.
  36. Kumar, JS, Bhuvaneswari, P. Analysis of electroencephalography (EEG) signals and its categorization – a study. Procedia Eng 2012;38:2525–36. https://doi.org/10.1016/j.proeng.2012.06.298 . [DOI: 10.1016/j.proeng.2012.06.298]
  37. Jeste, SS, Kirkham, N, Senturk, D, Hasenstab, K, Sugar, C, Kupelian, C, et al.. Electrophysiological evidence of heterogeneity in visual statistical learning in young children with asd. Dev Sci 2015;18:90–105. https://doi.org/10.1111/desc.12188 . [DOI: 10.1111/desc.12188]
  38. Scheffler, AW, Telesca, D, Sugar, CA, Jeste, S, Dickinson, A, DiStefano, C, et al.. Covariate-adjusted region-referenced generalized functional linear model for eeg data. Stat Med 2019;38:5587–602. https://doi.org/10.1002/sim.8384 . [DOI: 10.1002/sim.8384]
  39. Segalowitz, SJ, Santesso, DL, Jetha, MK. Electrophysiological changes during adolescence: a review. Brain Cognit 2010;72:86–100. https://doi.org/10.1016/j.bandc.2009.10.003 . [DOI: 10.1016/j.bandc.2009.10.003]
  40. Marco, N, Şentürk, D, Jeste, S, DiStefano, C, Dickinson, A, Telesca, D. Flexible regularized estimation in high-dimensional mixed membership models. arXiv preprint arXiv:2212.06906 2022.
  41. Shamshoian, J, Şentürk, D, Jeste, S, Telesca, D. Bayesian analysis of longitudinal and multidimensional functional data. Biostatistics 2022;23:558–73. https://doi.org/10.1093/biostatistics/kxaa041 . [DOI: 10.1093/biostatistics/kxaa041]

Word Cloud

Created with Highcharts 10.0.0functionalregressionBayesiancovariancescalarconditionalmeancovariatebrainimagingdataFunctionmodelsrelateoutcomespredictorsfunctionlimitedexceptionsmanyframeworksoperateassumptioninformationaffectpatternscovariationmanuscriptaddressdisparitydevelopingmodelprovidingjointinferencefunctionsworkhingesbasisexpansionsevaluationdomainspacedefineflexiblenon-parametricformsdependenceaidinterpretationdevelopnovellow-dimensionalsummariesindicatedegreecovariate-dependentheteroskedasticityproposedmodelingframeworkmotivatedappliedcasestudyelectroencephalographyaimingelucidatepotentialdifferentiationneuraldevelopmentchildrenautismspectrumdisorderanalysisapplicationsmethodsneuroimaging

Similar Articles

Cited By