A Comprehensive Evaluation of Radiomic Features in Normal Brain Magnetic Resonance Imaging: Investigating Robustness and Region Variations.

Mahsa Shakeri, Ahmad Mostaar, Arash Zare Sadeghi, Seyyed Mohammad Hosseini, Ali Yaghobi Joybari, Hossein Ghadiri
Author Information
  1. Mahsa Shakeri: Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  2. Ahmad Mostaar: Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  3. Arash Zare Sadeghi: Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
  4. Seyyed Mohammad Hosseini: Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  5. Ali Yaghobi Joybari: Department of Radiation Oncology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  6. Hossein Ghadiri: Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Abstract

Background: Despite extensive research on various brain diseases, a few studies have focused on radiomic feature distribution in healthy brain images. The present study applied a novel radiomic framework to investigate the robustness and baseline values of radiomic features in normal brain magnetic resonance imaging (MRIs) regions.
Materials and Methods: Analyses were performed on T1 and T2 images including 276 normal brains and 14 healthy volunteers were scanned with three scanners using the same protocols. The images were divided into 1024 three-dimensional nonoverlap patches with the same pixel size. Seven patches located in the thalamus, putamen, hippocampus and brain stem were selected as volume of interest (VOI). Eighty-five radiomic features were generated. To investigate the variation of features across VOIs, the analysis of variance was performed and coefficient of variation (COV) and intraclass correlation coefficient (ICC) were explored to examine the features repeatability.
Results: Thalamus (right and left) and hippocampus (left) resulted in more stable features (COV ��� 6%) in T1 and T2 images, respectively. The inter-scanner ICC analysis demonstrated the features of T2 sequences represented more repeatable results and the brain stem and thalamus (both T1 and T2) showed particularly high repeatability (higher ICC values). Robust results (ICC ��� 0.9) were identified for energy and range features of the first order class and several textures features across different brain regions.
Conclusion: Our results indicated the baselines of the repeatable texture features in healthy brain structural MRI highlighting inter-scanner stability. According to the findings, MRI sequencing and VOI location impact feature robustness and should be considered in brain radiomic studies.

Keywords

References

  1. Insights Imaging. 2020 Aug 12;11(1):91 [PMID: 32785796]
  2. J Chiropr Med. 2016 Jun;15(2):155-63 [PMID: 27330520]
  3. Exp Neurol. 2006 Jun;199(2):465-78 [PMID: 16626704]
  4. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  5. Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1143-1158 [PMID: 30170872]
  6. Stat Methods Med Res. 2015 Feb;24(1):27-67 [PMID: 24919831]
  7. IEEE Trans Pattern Anal Mach Intell. 2019 Jul;41(7):1559-1572 [PMID: 29993532]
  8. Biomed Phys Eng Express. 2023 Jul 17;9(5): [PMID: 37413967]
  9. Sci Rep. 2023 Sep 29;13(1):16421 [PMID: 37775531]
  10. Nat Commun. 2024 Jan 22;15(1):654 [PMID: 38253604]
  11. Med Phys. 2020 Apr;47(4):1680-1691 [PMID: 31971614]
  12. Nat Rev Neurosci. 2002 Mar;3(3):243-9 [PMID: 11994756]
  13. Invest Radiol. 2019 Apr;54(4):221-228 [PMID: 30433891]
  14. Phys Imaging Radiat Oncol. 2022 May 14;22:131-136 [PMID: 35633866]
  15. Brain Sci. 2021 Aug 10;11(8): [PMID: 34439674]
  16. J Neuroimaging. 2016 Mar-Apr;26(2):201-6 [PMID: 26011757]
  17. Cereb Cortex. 2020 Mar 14;30(3):1117-1128 [PMID: 31408101]
  18. Sci Rep. 2021 Jul 9;11(1):14248 [PMID: 34244594]
  19. J Pers Med. 2021 Aug 27;11(9): [PMID: 34575619]
  20. Front Aging Neurosci. 2018 Nov 28;10:393 [PMID: 30546304]
  21. Neurosurgery. 2018 Jul 1;83(1):76-85 [PMID: 28973417]
  22. Schizophr Res. 2020 Sep;223:337-344 [PMID: 32988740]
  23. Phys Med Biol. 2022 Apr 19;67(9): [PMID: 35325881]
  24. Sci Rep. 2023 Oct 5;13(1):16791 [PMID: 37798392]
  25. Learn Mem. 2004 Jul-Aug;11(4):397-405 [PMID: 15254219]
  26. Med Phys. 2009 Apr;36(4):1236-43 [PMID: 19472631]
  27. Radiology. 2016 Nov;281(2):357-372 [PMID: 27755933]
  28. Comput Intell Neurosci. 2017;2017:2426475 [PMID: 28321248]
  29. Comput Biol Med. 2022 Dec;151(Pt A):106332 [PMID: 36413815]
  30. PLoS One. 2014 Jul 15;9(7):e102107 [PMID: 25025374]
  31. Aust N Z J Psychiatry. 2015 Jun;49(6):502-18 [PMID: 25943981]
  32. J Clin Med. 2023 Aug 21;12(16): [PMID: 37629474]
  33. Phys Med Biol. 2016 Jul 7;61(13):R150-66 [PMID: 27269645]
  34. Vis Comput Ind Biomed Art. 2019 Nov 20;2(1):19 [PMID: 32240418]
  35. Sci Rep. 2020 Jul 23;10(1):12340 [PMID: 32704007]
  36. Vis Comput Ind Biomed Art. 2022 Apr 1;5(1):10 [PMID: 35359245]
  37. J Magn Reson Imaging. 2021 Sep;54(3):1009-1021 [PMID: 33860966]
  38. Front Neurosci. 2021 Jul 05;15:682777 [PMID: 34290581]
  39. Sci Rep. 2021 Feb 17;11(1):3973 [PMID: 33597610]
  40. Diagnostics (Basel). 2022 Sep 09;12(9): [PMID: 36140598]
  41. Front Neurosci. 2018 Aug 21;12:576 [PMID: 30186103]
  42. Front Aging Neurosci. 2021 Oct 07;13:746982 [PMID: 34690745]
  43. Ther Adv Neurol Disord. 2019 Mar 29;12:1756286419838682 [PMID: 30956687]
  44. Radiology. 2018 May;287(2):620-630 [PMID: 29165048]
  45. J Neurooncol. 2021 Dec;155(3):215-224 [PMID: 34797525]
  46. Sci Rep. 2017 Jun 22;7(1):4041 [PMID: 28642480]
  47. Phys Med. 2022 Apr;96:130-139 [PMID: 35287100]
  48. Med Phys. 2020 Jul;47(7):3054-3063 [PMID: 32277703]
  49. J Imaging. 2022 Nov 07;8(11): [PMID: 36354876]
  50. J Magn Reson Imaging. 2021 Feb;53(2):394-407 [PMID: 32864820]
  51. Front Oncol. 2021 Jun 25;11:665929 [PMID: 34249702]
  52. Phys Imaging Radiat Oncol. 2021 Nov 20;20:88-93 [PMID: 34849414]
  53. Sci Rep. 2022 Oct 6;12(1):16712 [PMID: 36202934]
  54. Korean J Radiol. 2019 Jul;20(7):1124-1137 [PMID: 31270976]

Word Cloud

Created with Highcharts 10.0.0featuresbrainradiomicimagesT2ICChealthyT1repeatableresultsstudiesfeatureinvestigaterobustnessvaluesnormalmagneticresonanceimagingregionsperformedpatchesthalamushippocampusstemVOIvariationacrossanalysiscoefficientCOVrepeatabilityleft���inter-scannerMRIBrainBackground:DespiteextensiveresearchvariousdiseasesfocuseddistributionpresentstudyappliednovelframeworkbaselineMRIsMaterialsMethods:Analysesincluding276brains14volunteersscannedthreescannersusingprotocolsdivided1024three-dimensionalnonoverlappixelsizeSevenlocatedputamenselectedvolumeinterestEighty-fivegeneratedVOIsvarianceintraclasscorrelationexploredexamineResults:Thalamusrightresultedstable6%respectivelydemonstratedsequencesrepresentedshowedparticularlyhighhigherRobust09identifiedenergyrangefirstorderclassseveraltexturesdifferentConclusion:indicatedbaselinestexturestructuralhighlightingstabilityAccordingfindingssequencinglocationimpactconsideredComprehensiveEvaluationRadiomicFeaturesNormalMagneticResonanceImaging:InvestigatingRobustnessRegionVariationsrobust

Similar Articles

Cited By