Artificial Neural Network-based Model for Predicting Cardiologists' Over-apron Dose in CATHLABs.

Reza Fardid, Fatemeh Farah, Hossein Parsaei, Hadi Rezaei, Mohammad Vahid Jorat
Author Information
  1. Reza Fardid: Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
  2. Fatemeh Farah: Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
  3. Hossein Parsaei: Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
  4. Hadi Rezaei: Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
  5. Mohammad Vahid Jorat: Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Aim: The radiation dose that cardiologists receive in the catheterization laboratory is influenced by various factors. Handling high-stress tasks in interventional cardiology departments may cause physicians to overlook the use of dosimeters. Therefore, it is essential to develop a model for predicting cardiologists' radiation exposure.
Materials and Methods: This study developed an artificial neural network (ANN) model to predict the over-apron radiation dose received by cardiologists during catheterization procedures, using dose area product (DAP) values. Leveraging a validated Monte Carlo simulation program, we generated data from simulations with varying spectra (70, 81, and 90 kVp) and tube orientations, resulting in 125 unique scenarios. We then used these data to train a multilayer perceptron neural network with four input features: DAP, energy spectrum, tube angulation, and the resulting cardiologist's dose.
Results: The model demonstrated high predictive accuracy with a correlation coefficient (-value) of 0.95 and a root mean square error (RMSE) of 3.68 ��Sv, outperforming a traditional linear regression model, which had an -value of 0.48 and an RMSE of 18.15 ��Sv. This significant improvement highlights the effectiveness of advanced techniques such as ANNs in accurately predicting occupational radiation doses.
Conclusion: This study underscores the potential of ANN models for accurate radiation dose prediction, enhancing safety protocols, and providing a reliable tool for real-time exposure assessment in clinical settings. Future research should focus on broader validation and integration into real-time monitoring systems.

Keywords

References

  1. DEN Open. 2023 Apr 05;3(1):e234 [PMID: 37035033]
  2. Radiat Prot Dosimetry. 2015 Dec;167(4):671-7 [PMID: 25614631]
  3. Radiat Prot Dosimetry. 2005;117(1-3):26-9 [PMID: 16461537]
  4. Radiat Prot Dosimetry. 2007;124(3):250-9 [PMID: 17956933]
  5. Sci Rep. 2023 May 15;13(1):7824 [PMID: 37188704]
  6. Acad Radiol. 2019 Feb;26(2):163-169 [PMID: 29934019]
  7. JACC Cardiovasc Interv. 2011 Mar;4(3):336-43 [PMID: 21435613]
  8. Pediatr Cardiol. 2009 May;30(4):409-13 [PMID: 19184174]
  9. Australas Phys Eng Sci Med. 2019 Jun;42(2):529-540 [PMID: 30963459]
  10. BMJ Open. 2017 Dec 15;7(12):e018333 [PMID: 29248885]
  11. Radiat Prot Dosimetry. 2010 Aug;140(3):259-65 [PMID: 20348191]
  12. Br J Gen Pract. 2018 Mar;68(668):143-144 [PMID: 29472224]
  13. Radiat Prot Dosimetry. 2015 Dec;167(4):525-31 [PMID: 25380759]
  14. Radiat Prot Dosimetry. 2008;131(1):80-6 [PMID: 18757899]
  15. Health Phys. 2008 Mar;94(3):211-27 [PMID: 18301095]
  16. Catheter Cardiovasc Interv. 2018 Mar 1;91(4):647-654 [PMID: 28707381]
  17. Radiat Prot Dosimetry. 2020 Jul 7;189(1):98-105 [PMID: 32103272]
  18. Catheter Cardiovasc Interv. 2018 Jun;91(7):1194-1199 [PMID: 28862392]
  19. J Cancer Res Ther. 2017 Oct-Dec;13(6):901-907 [PMID: 29237950]
  20. Radiat Prot Dosimetry. 2008;129(1-3):321-7 [PMID: 18426849]
  21. Radiat Prot Dosimetry. 2004;112(2):245-9 [PMID: 15292524]
  22. Phys Med Biol. 2006 Jul 7;51(13):R287-301 [PMID: 16790908]
  23. Phys Med Biol. 2007 Jan 21;52(2):317-30 [PMID: 17202617]
  24. Phys Med. 2018 Sep;53:103-107 [PMID: 30241744]
  25. J Interv Cardiol. 2006 Jun;19(3):237-44 [PMID: 16724966]
  26. Radiat Prot Dosimetry. 2001;95(2):143-8 [PMID: 11572642]
  27. Australas Phys Eng Sci Med. 2019 Sep;42(3):771-779 [PMID: 31332724]
  28. Radiat Prot Dosimetry. 2001;94(1-2):193-6 [PMID: 11487835]
  29. Br J Radiol. 2003 Sep;76(909):638-47 [PMID: 14500279]
  30. Radiat Prot Dosimetry. 2019 Jul 1;184(1):36-43 [PMID: 30371863]
  31. Am J Gastroenterol. 2020 Apr;115(4):555-561 [PMID: 32195731]
  32. Australas Phys Eng Sci Med. 2015 Mar;38(1):83-91 [PMID: 25544658]

Word Cloud

Created with Highcharts 10.0.0doseradiationmodelcatheterizationneuralnetworkcardiologistslaboratorypredictingexposurestudyANNDAPMonteCarlosimulationdatatuberesulting-value0RMSE��Svreal-timeArtificialAim:receiveinfluencedvariousfactorsHandlinghigh-stresstasksinterventionalcardiologydepartmentsmaycausephysiciansoverlookusedosimetersThereforeessentialdevelopcardiologists'MaterialsMethods:developedartificialpredictover-apronreceivedproceduresusingareaproductvaluesLeveragingvalidatedprogramgeneratedsimulationsvaryingspectra708190kVporientations125uniquescenariosusedtrainmultilayerperceptronfourinputfeatures:energyspectrumangulationcardiologist'sResults:demonstratedhighpredictiveaccuracycorrelationcoefficient95rootmeansquareerror368outperformingtraditionallinearregression481815significantimprovementhighlightseffectivenessadvancedtechniquesANNsaccuratelyoccupationaldosesConclusion:underscorespotentialmodelsaccuratepredictionenhancingsafetyprotocolsprovidingreliabletoolassessmentclinicalsettingsFutureresearchfocusbroadervalidationintegrationmonitoringsystemsNeuralNetwork-basedModelPredictingCardiologists'Over-apronDoseCATHLABscardiologists���apron

Similar Articles

Cited By