Discovery of novel vaccine candidates based on the immunogenic epitopes derived from membrane proteins.

Seyyed Amir Hosseini, Saman Hashemi, Davood Siamian, Ali Asghari, Mohammad Fathollahzadeh, Hamidreza Majidiani, Iman Shahraki, Mohamad Hosein Safari
Author Information
  1. Seyyed Amir Hosseini: Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. ORCID
  2. Saman Hashemi: MS.C. in Poultry Nutrition, College of Veterinary, Razi University, Kermanshah, Iran. ORCID
  3. Davood Siamian: Department of Biology, Faculty of Basic Science, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran. ORCID
  4. Ali Asghari: Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran. ORCID
  5. Mohammad Fathollahzadeh: Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ORCID
  6. Hamidreza Majidiani: Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran. ORCID
  7. Iman Shahraki: Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran. ORCID
  8. Mohamad Hosein Safari: Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. ORCID

Abstract

Purpose: Due to the widespread distribution and importance of infection as a parasitic zoonosis, multi-epitope vaccine design was implemented using a set of immunodominant epitopes screened out of a wide scope of membrane proteins.
Materials and Methods: On this basis, 5 vaccine candidates were created using linkers ([GGGGS], KK, AAY, GPGPG, GDGDG, EAAAK) and adjuvants (RS-09 peptide, resuscitation-promoting factor E [RpfE] and 50S ribosomal protein, human interferon [IFN]-��).
Results: Polytopes with RS-09 alone (Toxo-App) and with IFN-�� (Toxo-Apfn), and one with 50S ribosomal protein (Toxo-Ribos) showed the highest immunogenicity during prediction, and their 3-dimensional structure was refined. Protein-protein docking and molecular dynamics simulation analysis was done between the Toxo-App and human toll-like receptor (TLR)-4, rendering a stable connection. Codon optimization and cloning was done ultimately for the selected vaccine candidate.
Conclusion: In conclusion, potent multi-epitope vaccine candidates were designed against toxoplasmosis using a diverse set of techniques, while further wet experiments are recommended.

Keywords

References

  1. Ann N Y Acad Sci. 2013 May;1285:115-32 [PMID: 23527566]
  2. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W526-31 [PMID: 15215442]
  3. Proteins. 2006 Oct 1;65(1):40-8 [PMID: 16894596]
  4. Mol Divers. 2023 Aug;27(4):1613-1632 [PMID: 36006502]
  5. Parasitology. 2014 Sep;141(11):1365-78 [PMID: 24805159]
  6. NPJ Vaccines. 2022 Oct 31;7(1):131 [PMID: 36310233]
  7. Clin Microbiol Rev. 2018 Sep 12;31(4): [PMID: 30209035]
  8. Nucleic Acids Res. 2017 Jul 3;45(W1):W24-W29 [PMID: 28472356]
  9. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  10. PLoS One. 2013 Sep 13;8(9):e73957 [PMID: 24058508]
  11. Front Cell Infect Microbiol. 2022 May 11;12:852889 [PMID: 35646733]
  12. Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343 [PMID: 30357391]
  13. Bioinformatics. 2014 Mar 15;30(6):846-51 [PMID: 24167156]
  14. Bioinformatics. 2011 Jul 15;27(14):2013-4 [PMID: 21685045]
  15. J Interferon Cytokine Res. 2000 Mar;20(3):311-9 [PMID: 10762079]
  16. Microb Pathog. 2019 Jan;126:172-184 [PMID: 30399440]
  17. Curr Opin Cell Biol. 2022 Jun;76:102085 [PMID: 35569259]
  18. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W384-8 [PMID: 23737448]
  19. PLoS One. 2023 May 23;18(5):e0286224 [PMID: 37220125]
  20. Int J Pept Res Ther. 2022;28(5):134 [PMID: 35911179]
  21. Sci Rep. 2020 Jan 23;10(1):1066 [PMID: 31974431]
  22. BMC Infect Dis. 2004 Oct 22;4:44 [PMID: 15500691]
  23. Biologicals. 2021 Jan;69:83-85 [PMID: 33143992]
  24. Expert Rev Anti Infect Ther. 2018 Jun;16(6):447-460 [PMID: 29855213]
  25. Nat Protoc. 2020 May;15(5):1829-1852 [PMID: 32269383]
  26. Expert Rev Anti Infect Ther. 2012 Jul;10(7):815-28 [PMID: 22943404]
  27. Transfus Med Rev. 2016 Jul;30(3):116-22 [PMID: 27145927]
  28. Mol Cell Proteomics. 2011 Jan;10(1):M110.000745 [PMID: 20935347]
  29. Trends Parasitol. 2019 Mar;35(3):239-253 [PMID: 30718083]
  30. Adv Exp Med Biol. 2005;568:217-23 [PMID: 16107075]
  31. Gene Ther. 2023 Feb;30(1-2):41-50 [PMID: 34108629]
  32. Int Immunol. 2018 Mar 10;30(3):113-119 [PMID: 29408976]
  33. J Food Prot. 2015 Feb;78(2):457-76 [PMID: 25710166]
  34. Front Pediatr. 2022 Jul 06;10:894573 [PMID: 35874584]
  35. BMC Bioinformatics. 2007 Jan 05;8:4 [PMID: 17207271]
  36. Parasit Vectors. 2022 Oct 12;15(1):364 [PMID: 36224608]
  37. PLoS One. 2010 Oct 27;5(10):e13677 [PMID: 21060869]
  38. Sci Rep. 2023 Nov 8;13(1):19421 [PMID: 37940672]
  39. Immunol Rev. 2011 Mar;240(1):269-85 [PMID: 21349099]
  40. Mamm Genome. 2003 Dec;14(12):859-65 [PMID: 14724739]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 [PMID: 30395287]
  42. Transbound Emerg Dis. 2020 Jan;67(1):46-64 [PMID: 31464067]
  43. Drug Discov Today. 2020 Jun;25(6):1034-1042 [PMID: 32205198]
  44. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W526-31 [PMID: 15980527]
  45. Sci Rep. 2021 Dec 29;11(1):24485 [PMID: 34966175]
  46. J Mol Model. 2014 Jun;20(6):2278 [PMID: 24878803]
  47. Anim Health Res Rev. 2005 Jun;6(1):41-61 [PMID: 16164008]
  48. Parasitol Today. 1993 Sep;9(9):335-7 [PMID: 15463799]
  49. Parasit Vectors. 2020 Apr 15;13(1):196 [PMID: 32295617]
  50. Protein Eng. 2001 Aug;14(8):529-32 [PMID: 11579220]
  51. Expert Rev Vaccines. 2013 Nov;12(11):1287-99 [PMID: 24093877]
  52. Nucleic Acids Res. 2022 Jul 5;50(W1):W510-W515 [PMID: 35648435]

Word Cloud

Created with Highcharts 10.0.0vaccineusingcandidatesmulti-epitopedesignsetepitopesmembraneproteinsRS-0950SribosomalproteinhumanToxo-AppdonePurpose:DuewidespreaddistributionimportanceinfectionparasiticzoonosisimplementedimmunodominantscreenedwidescopeMaterialsMethods:basis5createdlinkers[GGGGS]KKAAYGPGPGGDGDGEAAAKadjuvantspeptideresuscitation-promotingfactorE[RpfE]interferon[IFN]-��Results:PolytopesaloneIFN-��Toxo-ApfnoneToxo-Ribosshowedhighestimmunogenicityprediction3-dimensionalstructurerefinedProtein-proteindockingmoleculardynamicssimulationanalysistoll-likereceptorTLR-4renderingstableconnectionCodonoptimizationcloningultimatelyselectedcandidateConclusion:conclusionpotentdesignedtoxoplasmosisdiversetechniqueswetexperimentsrecommendedDiscoverynovelbasedimmunogenicderivedImmunoinformaticsToxoplasmagondiiVaccinationVaccine

Similar Articles

Cited By