Hemodynamics of distal cerebral arteries are associated with functional outcomes in symptomatic ischemic stroke in middle cerebral artery territory: A four-dimensional flow cardiovascular magnetic resonance study.

Peirong Jiang, Lixin Liu, Xiuzhu Xu, Yanping Zheng, Jialin Chen, Huiyu Qiao, Lin Lin, Bin Sun, Xihai Zhao, He Wang, Zhensen Chen, Yunjing Xue
Author Information
  1. Peirong Jiang: Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: peirongjiang@fjmu.edu.cn.
  2. Lixin Liu: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China. Electronic address: 21110850030@m.fudan.edu.cn.
  3. Xiuzhu Xu: Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: xiuzhuxu1996@163.com.
  4. Yanping Zheng: Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: yanpingzheng1@163.com.
  5. Jialin Chen: Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: 15905097251@163.com.
  6. Huiyu Qiao: School of Biomedical Engineering, Capital Medical University, Beijing, China. Electronic address: qiaohuiyu98@163.com.
  7. Lin Lin: Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: linlin@fjmu.edu.cn.
  8. Bin Sun: Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: sunbin923@126.com.
  9. Xihai Zhao: Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China. Electronic address: xihaizhao@tsinghua.edu.cn.
  10. He Wang: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China. Electronic address: hewang@fudan.edu.cn.
  11. Zhensen Chen: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China. Electronic address: zhensenchen@gmail.com.
  12. Yunjing Xue: Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China. Electronic address: xueyunjing@126.com.

Abstract

BACKGROUND: Cerebrovascular hemodynamics are believed to play an important role in the development of ischemic stroke (IS). However, the relationships between hemodynamics and prognosis are not fully understood. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) enables comprehensive characteristics of cerebrovascular hemodynamics. This study aims to investigate the associations of the different hemodynamics derived from 4D flow CMR with IS functional outcomes.
METHODS: Ninety-one patients (median age 64 years, 62 males) with unilateral IS in middle cerebral artery (MCA) territory were included. All subjects underwent a CMR scan, including 4D flow, three-dimensional (3D) time-of-flight magnetic resonance angiography, and 3D whole brain black-blood high-resolution vessel wall imaging of the MCA. Six hemodynamic parameters, including flow rate, velocity, pulsatility index, time-averaged wall shear stress (TAWSS), oscillatory shear index, and relative residence time (RRT), were calculated for the lesion site, pre-bifurcation M1 (pM1) segment, and the distal M1 and/or first branches of M2 (dM1/M2) segments. Vessel characteristics, such as lumen area, vessel area, wall area, maximum wall thickness, and the degree of stenosis, were calculated at the most stenotic lesion site. The modified Rankin Scale (mRS) scores were assessed at 90 days and 1 year, and an mRS >2 was considered as a poor functional outcome.
RESULTS: Lower segment-level TAWSS (odds ratio [OR]: 0.24, P = 0.006 and OR: 0.29, P = 0.014), higher RRT (OR: 2.74, P = 0.007 and OR: 2.40, P = 0.011) of dM1/M2 segments, and lower segment- and lesion-level velocity (OR: 0.40, P = 0.019 and OR: 0.41, P = 0.025; OR: 0.41, P = 0.030 and OR: 0.42, P = 0.040) of pM1 segment were observed to be associated with poor functional outcome at both 90 days and 1 year. Using the cut-off value of 3.58 Pa and 0.29, respectively, TAWSS and RRT of dM1/M2 segments showed moderate performance in distinguishing poor functional outcome from favorable outcome (area under the curve ranging from 0.642-0.687) both at 90 days and 1 year.
CONCLUSION: Distal segmental TAWSS and RRT of dM1/M2 segments were associated with poor functional outcomes. Such alterations in hemodynamics might help in the identification of patients with potentially unfavorable prognosis.

Keywords

References

  1. J Neurosurg. 2010 Jun;112(6):1240-53 [PMID: 19943737]
  2. Front Cardiovasc Med. 2024 Nov 08;11:1456814 [PMID: 39582524]
  3. Stroke. 2021 Jun;52(6):1995-2004 [PMID: 33947209]
  4. Stroke Vasc Neurol. 2020 Jun;5(2):128-137 [PMID: 32606085]
  5. Stroke. 2014 Mar;45(3):663-9 [PMID: 24481975]
  6. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1916-22 [PMID: 14715506]
  7. J Cereb Blood Flow Metab. 2021 Feb;41(2):206-218 [PMID: 32936731]
  8. Magn Reson Med. 2022 Oct;88(4):1643-1658 [PMID: 35754143]
  9. Front Neurol. 2020 Jan 17;10:1372 [PMID: 32010041]
  10. Ann Biomed Eng. 2010 Feb;38(2):380-90 [PMID: 19936925]
  11. Hypertension. 2014 Jan;63(1):54-60 [PMID: 24126175]
  12. Front Neurol. 2020 Dec 21;11:609607 [PMID: 33408689]
  13. J Magn Reson Imaging. 2017 Jul;46(1):102-114 [PMID: 28152256]
  14. Stroke. 2007 Aug;38(8):2379-81 [PMID: 17615365]
  15. Annu Rev Biomed Eng. 2020 Jun 4;22:103-126 [PMID: 32155346]
  16. Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2224-31 [PMID: 25060797]
  17. Magn Reson Imaging. 2019 Sep;61:73-82 [PMID: 31100318]
  18. J Neurol Neurosurg Psychiatry. 2011 Jan;82(1):33-7 [PMID: 20802030]
  19. Eur Heart J. 2014 Nov 14;35(43):3013-20, 3020a-3020d [PMID: 25230814]
  20. Neurology. 2006 Apr 25;66(8):1159-63 [PMID: 16525124]
  21. Magn Reson Med. 2020 Oct;84(4):2204-2218 [PMID: 32167203]
  22. J Intern Med. 2022 Feb;291(2):115-127 [PMID: 34813112]
  23. CNS Neurosci Ther. 2015 Jun;21(6):530-5 [PMID: 25917332]
  24. Stroke. 2014 Jul;45(7):2160-236 [PMID: 24788967]
  25. Neurology. 1999 Jul 13;53(1):126-31 [PMID: 10408548]
  26. Neurosurgery. 2007 Oct;61(4):842-51; discussion 852 [PMID: 17986947]
  27. J Stroke. 2023 Jan;25(1):132-140 [PMID: 36746383]
  28. Radiology. 2023 May;307(3):e222685 [PMID: 36943077]
  29. Magn Reson Med. 2018 Jun;79(6):3229-3238 [PMID: 29044753]
  30. Atherosclerosis. 2006 Mar;185(1):108-13 [PMID: 16005010]
  31. Circulation. 2011 Aug 16;124(7):779-88 [PMID: 21788584]
  32. Magn Reson Med. 2021 Feb;85(2):721-733 [PMID: 32754969]
  33. Neurology. 2020 Sep 8;95(10):e1362-e1371 [PMID: 32641533]
  34. Stroke Vasc Neurol. 2022 Oct;7(5):415-450 [PMID: 35443985]
  35. Stroke. 2003 Oct;34(10):2420-5 [PMID: 14500934]
  36. Stroke. 2009 Jun;40(6):2098-103 [PMID: 19359649]
  37. J R Soc Interface. 2011 Oct 7;8(63):1449-61 [PMID: 21471188]
  38. J Magn Reson Imaging. 2022 Jun;55(6):1666-1680 [PMID: 34792835]
  39. AJNR Am J Neuroradiol. 2017 Feb;38(2):218-229 [PMID: 27469212]
  40. Magn Reson Med. 2015 May;73(5):1864-71 [PMID: 24934930]
  41. Stroke Vasc Neurol. 2022 Apr 26;: [PMID: 35474180]
  42. Neurology. 2008 Jun 10;70(24 Pt 2):2371-7 [PMID: 18434640]
  43. Magn Reson Med. 2013 Jun;69(6):1553-64 [PMID: 22760964]
  44. J Magn Reson Imaging. 2012 Nov;36(5):1097-103 [PMID: 22745007]
  45. J Cardiovasc Magn Reson. 2024 Summer;26(1):100003 [PMID: 38211658]
  46. Ann Biomed Eng. 2011 May;39(5):1414-22 [PMID: 21279441]
  47. Quant Imaging Med Surg. 2022 Dec;12(12):5462-5473 [PMID: 36465823]
  48. J Magn Reson Imaging. 2012 Jun;35(6):1462-71 [PMID: 22282344]
  49. Eur J Neurol. 2024 Oct;31(10):e16422 [PMID: 39096086]
  50. J Cardiovasc Magn Reson. 2015 Aug 10;17:72 [PMID: 26257141]
  51. J Magn Reson Imaging. 2011 Apr;33(4):988-94 [PMID: 21448968]
  52. Stroke. 2020 Oct;51(10):3064-3073 [PMID: 32883193]
  53. J Cardiovasc Magn Reson. 2024 Winter;26(2):101081 [PMID: 39127260]
  54. Lancet Neurol. 2022 Apr;21(4):355-368 [PMID: 35143758]
  55. Neurology. 2022 Jan 18;98(3):e279-e290 [PMID: 34911748]
  56. Circ Res. 2003 Dec 12;93(12):1225-32 [PMID: 14593003]
  57. Quant Imaging Med Surg. 2022 Jan;12(1):688-698 [PMID: 34993111]
  58. J Cardiovasc Magn Reson. 2023 Jul 20;25(1):40 [PMID: 37474977]
  59. J Magn Reson Imaging. 2012 Jul;36(1):128-38 [PMID: 22336966]
  60. Stroke Vasc Neurol. 2023 Feb;8(1):77-85 [PMID: 36104090]
  61. J Cardiovasc Magn Reson. 2015 Oct 05;17:87 [PMID: 26438074]
  62. Lancet Neurol. 2021 Oct;20(10):795-820 [PMID: 34487721]
  63. Stroke. 2022 Apr;53(4):1074-1084 [PMID: 35291822]

Word Cloud

Created with Highcharts 10.0.00P = 0OR:flowfunctionalhemodynamicsoutcome4DCMRcerebralwallTAWSSRRTdM1/M2segmentsareapoorstrokeISmagneticresonanceoutcomesarteryshear90 days1 yearassociatedischemicprognosiscardiovascularcharacteristicsstudypatientsmiddleMCAincluding3DvesselvelocityindexstresscalculatedlesionsiteM1pM1segmentdistalmRS2924041BACKGROUND:CerebrovascularbelievedplayimportantroledevelopmentHoweverrelationshipsfullyunderstoodFour-dimensionalenablescomprehensivecerebrovascularaimsinvestigateassociationsdifferentderivedMETHODS:Ninety-onemedianage64 years62malesunilateralterritoryincludedsubjectsunderwentscanthree-dimensionaltime-of-flightangiographywholebrainblack-bloodhigh-resolutionimagingSixhemodynamicparametersratepulsatilitytime-averagedoscillatoryrelativeresidencetimepre-bifurcationand/orfirstbranchesM2VessellumenmaximumthicknessdegreestenosisstenoticmodifiedRankinScalescoresassessed>2consideredRESULTS:Lowersegment-leveloddsratio[OR]:24006014higher74007011lowersegment-lesion-level01902503042040observedUsingcut-offvalue358 Parespectivelyshowedmoderateperformancedistinguishingfavorablecurveranging642-0687CONCLUSION:DistalsegmentalalterationsmighthelpidentificationpotentiallyunfavorableHemodynamicsarteriessymptomaticterritory:four-dimensionalFunctionalIschemicMiddleWall

Similar Articles

Cited By