INTRODUCTION: Ubiquitin and ubiquitin-like systems play crucial roles across a wide range of organisms, from simple to complex. Among the three enzyme-mediated post-translational modification (PTM) steps, the ligation step is the most critical. HERC5, a member of the HECT ligase family, is one of the three enzymes involved in the ISGylation system. However, the precise start points and lengths of the HECT domains in HECT ligases are still under debate.
METHOD: Some studies suggest the inclusion of an additional N-terminal alpha helix region within the HECT domain. To investigate the structural biology of the HECT domain of HERC5, we produced and purified various lengths of the HERC5 HECT domain using different fusion proteins. This approach allowed us to explore the role of the N-terminal alpha helix in the stability of the HECT domain. Our experiments successfully produced and purified HERC5 HECT domains of different lengths with various fusion proteins.
RESULT: The findings demonstrated that the N-terminal alpha-helix does not enhance the stability of the HECT domain. These results challenge the notion that the N-terminal alpha-helix should be generally included in the HECT domain across all HECT ligases.
CONCLUSION: The inclusion of this region within the HECT domain may not be appropriate for generalization, as it does not contribute to stability, contrary to some previous suggestions.