Genetic risk variants implicate impaired maintenance and repair of periodontal tissues as causal for periodontitis-A synthesis of recent findings.

Arne S Schaefer, Luigi Nibali, Noha Zoheir, Niki M Moutsopoulos, Bruno G Loos
Author Information
  1. Arne S Schaefer: Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charit�� - Universit��tsmedizin Berlin, Corporate Member of Freie Universit��t Berlin, Humboldt-Universit��t Zu Berlin and Berlin Institute of Health, Berlin, Germany.
  2. Luigi Nibali: Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK. ORCID
  3. Noha Zoheir: Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK.
  4. Niki M Moutsopoulos: Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
  5. Bruno G Loos: Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. ORCID

Abstract

Periodontitis is a complex inflammatory disease in which the host genome, in conjunction with extrinsic factors, determines susceptibility and progression. Genetic predisposition is the strongest risk factor in the first decades of life. As people age, chronic exposure to the periodontal microbiome puts a strain on the proper maintenance of barrier function. This review summarizes our current knowledge on genetic risk factors implicated in periodontitis, derived (i) from hypothesis-free systematic whole genome-profiling studies (genome-wide association studies [GWAS] and quantitative trait loci [QTL] mapping studies), and independently validated through further unbiased approaches; (ii) from monogenic and oligogenic forms of periodontitis; and (iii) from syndromic forms of periodontitis. The genes include, but are not limited to, SIGLEC5, PLG, ROBO2, ABCA1, PF4, and CTSC. Notably, CTSC and PLG gene mutations were also identified in non-syndromic and syndromic forms of prepubertal and early-onset periodontitis. The functions of the identified genes in this review suggest that the pathways affected by the periodontitis-associated gene variants converge in functions involved in the maintenance and repair of structural integrity of the periodontal tissues. Particularly, these genes play a role in the healing of inflamed and ulcerated periodontal tissues, including roles in fibrinolysis, extrusion of cellular debris, extracellular matrix remodeling and angiogenesis. Syndromes that include periodontitis in their phenotype indicate that neutrophils play an important role in the regulation of inflammation in the periodontium. The established genetic susceptibility genes therefore collectively provide new insights into the molecular mechanisms and plausible causal factors underlying periodontitis.

Keywords

References

  1. Chapple ILC, Mealey BL, Van Dyke TE, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and Peri���implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S74���S84.
  2. Junge T, Topoll H, Eickholz P, Petsos H. Retrospective long���term analysis of tooth loss over 20���years in a specialist practice setting: Periodontally healthy/gingivitis and compromised patients. J Clin Periodontol. 2021;48(10):1356���1366.
  3. Loos BG, Needleman I. Endpoints of active periodontal therapy. J Clin Periodontol. 2020;47:61���71.
  4. Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000. 2020;83(1):26���39.
  5. Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafe M. Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol. 1999;34(8):911���921.
  6. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505���522.
  7. Barbe���Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. The interplay between immunosenescence and age���related diseases. Semin Immunopathol. 2020;42(5):545���557.
  8. Ebersole JL, Graves CL, Gonzalez OA, et al. Aging, inflammation, immunity and periodontal disease. Periodontol 2000. 2016;72:54���75.
  9. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12���S22.
  10. Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of oral microbiome in periodontal health and periodontitis: a critical review on prevention and treatment. Int J Mol Sci. 2022;23(9):5142.
  11. Garland T Jr. Trade���offs. Curr Biol. 2014;24(2):R60���R61.
  12. Bartold PM, Van Dyke TE. Periodontitis: a host���mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000. 2013;62:203���217.
  13. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti���inflammatory and pro���resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349���361.
  14. Balta MG, Loos BG, Nicu EA. Emerging concepts in the resolution of periodontal inflammation: a role for resolvin E1. Front Immunol. 2017;8:1682.
  15. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990���2010: a systematic review and meta���regression. J Dent Res. 2014;93(11):1045���1053.
  16. Taylor BA, Tofler GH, Carey HM, et al. Full���mouth tooth extraction lowers systemic inflammatory and thrombotic markers of cardiovascular risk. J Dent Res. 2006;85(1):74���78.
  17. Wray NR, Wijmenga C, Sullivan PF, Yang J, Visscher PM. Common disease is more complex than implied by the Core gene Omnigenic model. Cell. 2018;173(7):1573���1580.
  18. Nibali L, Bayliss���Chapman J, Almofareh SA, Zhou Y, Divaris K, Vieira AR. What is the heritability of periodontitis? A Systematic Review. J Dent Res. 2019;98(6):632���641.
  19. Nesse RM, Stein DJ. Towards a genuinely medical model for psychiatric nosology. BMC Med. 2012;10:5.
  20. McDade TW, Reyes���Garcia V, Tanner S, Huanca T, Leonard WR. Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia. Am J Phys Anthropol. 2008;136(4):478���484.
  21. Schafer AS, Jepsen S, Loos BG. Periodontal genetics: a decade of genetic association studies mandates better study designs. J Clin Periodontol. 2011;38(2):103���107.
  22. Laine ML, Loos BG, Crielaard W. Gene polymorphisms in chronic periodontitis. Int J Dent. 2010;2010:1���22.
  23. Loos BG, John RP, Laine ML. Identification of genetic risk factors for periodontitis and possible mechanisms of action. J Clin Periodontol. 2005;32(Suppl 6):159���179.
  24. Casas JP, Cooper J, Miller GJ, Hingorani AD, Humphries SE. Investigating the genetic determinants of cardiovascular disease using candidate genes and meta���analysis of association studies. Ann Hum Genet. 2006;70:145���169.
  25. Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large���scale replication study. JAMA. 2007;297(14):1551���1561.
  26. Schaefer AS, Bochenek G, Manke T, et al. Validation of reported genetic risk factors for periodontitis in a large���scale replication study. J Clin Periodontol. 2013;40:563���572.
  27. Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41���47.
  28. Genovese G, Fromer M, Stahl EA, et al. Increased burden of ultra���rare protein���altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19(11):1433���1441.
  29. Shungin D, Haworth S, Divaris K, et al. Genome���wide analysis of dental caries and periodontitis combining clinical and self���reported data. Nat Commun. 2019;10(1):2773.
  30. Munz M, Willenborg C, Richter GM, et al. A genome���wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Hum Mol Genet. 2017;26:2577���2588.
  31. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue���based map of the human proteome. Science. 2015;347:1260419.
  32. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec���10 selectively repress tissue damage���induced immune responses. Science. 2009;323(5922):1722���1725.
  33. Mueller R, Chopra A, Dommisch H, Schaefer AS. Periodontitis risk variants at SIGLEC5 impair ERG and MAFB binding. J Dent Res. 2021;22:551���558.
  34. Manz XD, Bogaard HJ, Aman J. Regulation of VWF (Von Willebrand factor) in inflammatory thrombosis. Arterioscler Thromb Vasc Biol. 2022;42(11):1307���1320.
  35. Kelly LM, Englmeier U, Lafon I, Sieweke MH, Graf T. MafB is an inducer of monocytic differentiation. EMBO J. 2000;19(9):1987���1997.
  36. Jeong HW, Hernandez���Rodriguez B, Kim J, et al. Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis. Nat Commun. 2017;8(1):726.
  37. Munz M, Richter GM, Loos BG, et al. Meta���analysis of genome���wide association studies of aggressive and chronic periodontitis identifies two novel risk loci. Eur J Hum Genet. 2019;27(1):102���113.
  38. Consortium GT. The genotype���tissue expression (GTEx) project. Nat Genet. 2013;45(6):580���585.
  39. Li WY, Chong SS, Huang EY, Tuan TL. Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen. 2003;11(4):239���247.
  40. Hudson NE. Biophysical mechanisms mediating fibrin fiber lysis. Biomed Res Int. 2017;2017:2748340.
  41. Ling MR, Chapple IL, Matthews JB. Peripheral blood neutrophil cytokine hyper���reactivity in chronic periodontitis. Innate Immun. 2015;21(7):714���725.
  42. Silva LM, Doyle AD, Greenwell���Wild T, et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science. 2021;374:eabl5450.
  43. Ma Q, Ozel AB, Ramdas S, et al. Genetic variants in PLG, LPA, and SIGLEC 14 as well as smoking contribute to plasma plasminogen levels. Blood. 2014;124(20):3155���3164.
  44. Rowland KJ, Diaz���Miron J, Guo J, et al. CXCL5 is required for angiogenesis, but not structural adaptation after small bowel resection. J Pediatr Surg. 2014;49(6):976���980.
  45. Li A, King J, Moro A, et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 2011;178(3):1340���1349.
  46. Chen C, Lin LY, Chen JW, Chang TT. CXCL5 suppression recovers neovascularization and accelerates wound healing in diabetes mellitus. Cardiovasc Diabetol. 2023;22(1):172.
  47. Shusterman A, Munz M, Richter G, et al. The PF4/PPBP/CXCL5 gene cluster is associated with periodontitis. J Dent Res. 2017;22:945���952.
  48. Jepsen S, Caton JG, Albandar JM, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and Peri���implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S237���S248.
  49. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: case definitions and diagnostic considerations. J Clin Periodontol. 2018;45(Suppl 20):S171���S189.
  50. Moutsopoulos NM, Zerbe CS, Wild T, et al. Interleukin���12 and Interleukin���23 blockade in leukocyte adhesion deficiency type 1. N Engl J Med. 2017;376(12):1141���1146.
  51. Moutsopoulos NM, Konkel J, Sarmadi M, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL���17���driven inflammatory bone loss. Sci Transl Med. 2014;6:229ra40.
  52. Roberts H, White P, Dias I, et al. Characterization of neutrophil function in Papillon���Lefevre syndrome. J Leukoc Biol. 2016;100(2):433���444.
  53. Kosem R, Debeljak M, Repic Lampret B, Kansky A, Battelino T, Trebusak PK. Cathepsin C gene 5������untranslated region mutation in papillon���lefevre syndrome. Dermatology. 2012;225(3):193���203.
  54. Sorensen OE, Clemmensen SN, Dahl SL, et al. Papillon���Lefevre syndrome patient reveals species���dependent requirements for neutrophil defenses. J Clin Invest. 2014;124(10):4539���4548.
  55. Sulak A, Toth L, Farkas K, et al. One mutation, two phenotypes: a single nonsense mutation of the CTSC gene causes two clinically distinct phenotypes. Clin Exp Dermatol. 2016;41(2):190���195.
  56. Pap EM, Farkas K, Toth L, et al. Identification of putative genetic modifying factors that influence the development of Papillon���Lefevre or Haim���Munk syndrome phenotypes. Clin Exp Dermatol. 2020;45(5):555���559.
  57. Thumbigere Math V, Reboucas P, Giovani PA, et al. Periodontitis in Chediak���Higashi syndrome: an altered Immunoinflammatory response. JDR Clin Trans Res. 2018;3(1):35���46.
  58. Ye Y, Carlsson G, Wondimu B, et al. Mutations in the ELANE gene are associated with development of periodontitis in patients with severe congenital neutropenia. J Clin Immunol. 2011;31(6):936���945.
  59. Lao Z, Fu J, Wu Z, et al. Case report: five���year periodontal management of a patient with two novel mutation sites in ELANE���induced cyclic neutropenia. Front Genet. 2022;13:972598.
  60. Aota K, Kani K, Yamanoi T, et al. Management of tooth extraction in a patient with ELANE gene mutation���induced cyclic neutropenia: a case report. Medicine. 2019;98(39):e17372.
  61. Rezaei N, Moin M, Pourpak Z, et al. The clinical, immunohematological, and molecular study of Iranian patients with severe congenital neutropenia. J Clin Immunol. 2007;27(5):525���533.
  62. Fadeel B, Grzybowska E. HAX���1: a multifunctional protein with emerging roles in human disease. Biochim Biophys Acta. 2009;1790(10):1139���1148.
  63. Carlsson G, Melin M, Dahl N, et al. Kostmann syndrome or infantile genetic agranulocytosis, part two: understanding the underlying genetic defects in severe congenital neutropenia. Acta Paediatr. 2007;96(6):813���819.
  64. Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K. Severe congenital neutropenias. Nat Rev Dis Primers. 2017;3:17032.
  65. Alaluusua S, Kivitie���Kallio S, Wolf J, Haavio ML, Asikainen S, Pirinen S. Periodontal findings in Cohen syndrome with chronic neutropenia. J Periodontol. 1997;68(5):473���478.
  66. Rodrigues JM, Fernandes HD, Caruthers C, Braddock SR, Knutsen AP. Cohen syndrome: review of the literature. Cureus. 2018;10(9):e3330.
  67. Brenchley L, McDermott DH, Gardner PJ, et al. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol. 2024;51(4):464���473.
  68. He Z, Jiang Q, Li F, Chen M. Crosstalk between venous thromboembolism and periodontal diseases: a bioinformatics analysis. Dis Markers. 2021;2021:1776567.
  69. Yildirim TT, Kaya FA, Taskesen M, et al. Aggressive periodontitis associated with kindler syndrome in a large kindler syndrome pedigree. Turk J Pediatr. 2017;59(1):56���61.
  70. Neering SH, Adyani���Fard S, Klocke A, Ruttermann S, Flemmig TF, Beikler T. Periodontitis associated with plasminogen deficiency: a case report. BMC Oral Health. 2015;15:59.
  71. Bally I, Dalonneau F, Chouquet A, et al. Two different missense C1S mutations, associated to periodontal Ehlers���Danlos syndrome, Lead to identical molecular outcomes. Front Immunol. 2019;10:2962.
  72. Biosse Duplan M, Hubert A, Le Norcy E, et al. Dental and periodontal manifestations of glycogen storage diseases: a case series of 60 patients. J Inherit Metab Dis. 2018;41(6):947���953.
  73. Gumus E, Ozen H. Glycogen storage diseases: an update. World J Gastroenterol. 2023;29(25):3932���3963.
  74. Weider M, Schlagenhauf U, Seefried L. Oral health status of adult hypophosphatasia patients: a cross���sectional study. J Clin Periodontol. 2022;49(12):1253���1261.
  75. Fernandez M, de Coo A, Quintela I, et al. Genetic susceptibility to periodontal disease in down syndrome: a case���control study. Int J Mol Sci. 2021;22(12):6274.
  76. Fang G, Wang W, Paunic V, et al. Discovering genetic interactions bridging pathways in genome���wide association studies. Nat Commun. 2019;10(1):4274.
  77. Muller R, Freitag���Wolf S, Weiner J 3rd, et al. Case���only design identifies interactions of genetic risk variants at SIGLEC5 and PLG with the lncRNA CTD���2353F22.1 implying the importance of periodontal wound healing for disease aetiology. J Clin Periodontol. 2023;50(1):90���101.
  78. Muller R, Freitag���Wolf S, Weiner J 3rd, et al. Case���only design identifies interactions of genetic risk variants at SIGLEC5 and PLG with the lncRNA CTD���2353F22.1 implying the importance of periodontal wound healing for disease aetiology. J Clin Periodontol. 2022;50:90���101.
  79. Kessler T, Zhang L, Liu Z, et al. ADAMTS���7 inhibits re���endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin���1. Circulation. 2015;131(13):1191���1201.
  80. Munz M, Richter GM, Loos BG, et al. Genome���wide association meta���analysis of coronary artery disease and periodontitis reveals a novel shared risk locus. Sci Rep. 2018;8(1):13678.
  81. Reilly MP, Li M, He J, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome���wide association studies. Lancet. 2011;377(9763):383���392.
  82. Schunkert H, Konig IR, Kathiresan S, et al. Large���scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333���338.
  83. Teumer A, Holtfreter B, Volker U, et al. Genome���wide association study of chronic periodontitis in a general German population. J Clin Periodontol. 2013;40(11):977���985.
  84. Richter GM, Kruppa J, Keceli HG, et al. Epigenetic adaptations of the masticatory mucosa to periodontal inflammation. Clin Epigenetics. 2021;13(1):203.
  85. Richter GM, Wagner G, Reichenmiller K, et al. Exome sequencing of 5 families with severe early���onset periodontitis. J Dent Res. 2022;101(2):151���157.
  86. Chopra A, Mueller R, Weiner J 3rd, et al. BACH1 binding links the genetic risk for severe periodontitis with ST8SIA1. J Dent Res. 2021;22:93���101.
  87. Zeng Z, Wu Y, Cao Y, et al. Slit2���Robo2 signaling modulates the fibrogenic activity and migration of hepatic stellate cells. Life Sci. 2018;203:39���47.
  88. Iida C, Ohsawa S, Taniguchi K, Yamamoto M, Morata G, Igaki T. JNK���mediated Slit���Robo signaling facilitates epithelial wound repair by extruding dying cells. Sci Rep. 2019;9(1):19549.
  89. Lee JY, Parks JS. ATP���binding cassette transporter AI and its role in HDL formation. Curr Opin Lipidol. 2005;16(1):19���25.
  90. Bochem AE, van der Valk FM, Tolani S, Stroes ES, Westerterp M, Tall AR. Increased systemic and plaque inflammation in ABCA1 mutation carriers with attenuation by statins. Arterioscler Thromb Vasc Biol. 2015;35(7):1663���1669.
  91. Ito S, Kioka N, Ueda K. Cell migration is negatively modulated by ABCA1. Biosci Biotechnol Biochem. 2019;83(3):463���471.
  92. Freitag���Wolf S, Munz M, Wiehe R, et al. Smoking modifies the genetic risk for early���onset periodontitis. J Dent Res. 2019;98(12):1332���1339.
  93. Sasaki K, Kurata K, Kojima N, et al. Expression cloning of a GM3���specific alpha���2,8���sialyltransferase (GD3 synthase). J Biol Chem. 1994;269(22):15950.
  94. Ohkawa Y, Miyazaki S, Hamamura K, et al. Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid���enriched microdomains. J Biol Chem. 2010;285(35):27213���27223.
  95. Iraqi FA, Churchill G, Mott R. The collaborative cross, developing a resource for mammalian systems genetics: a status report of the Wellcome Trust cohort. Mamm Genome. 2008;19(6):379���381.
  96. Divaris K, Monda KL, North KE, et al. Exploring the genetic basis of chronic periodontitis: a genome���wide association study. Hum Mol Genet. 2013;22:2312���2324.
  97. Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost. 2004;30(3):379���385.
  98. Liu CY, Battaglia M, Lee SH, Sun QH, Aster RH, Visentin GP. Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25��� (nonregulatory) T cells. J Immunol. 2005;174(5):2680���2686.
  99. Noack B, Gorgens H, Hempel U, et al. Cathepsin C gene variants in aggressive periodontitis. J Dent Res. 2008;87(10):958���963.
  100. Hewitt C, McCormick D, Linden G, et al. The role of cathepsin C in Papillon���Lefevre syndrome, prepubertal periodontitis, and aggressive periodontitis. Hum Mutat. 2004;23(3):222���228.
  101. de Haar SF, Jansen DC, Schoenmaker T, De Vree H, Everts V, Beertsen W. Loss���of���function mutations in cathepsin C in two families with Papillon���Lefevre syndrome are associated with deficiency of serine proteinases in PMNs. Hum Mutat. 2004;23(5):524.
  102. de Haar SF, Tigchelaar���Gutter W, Everts V, Beertsen W. Structure of the periodontium in cathepsin C���deficient mice. Eur J Oral Sci. 2006;114(2):171���173.
  103. de Haar SF, Hiemstra PS, van Steenbergen MT, Everts V, Beertsen W. Role of polymorphonuclear leukocyte���derived serine proteinases in defense against Actinobacillus actinomycetemcomitans. Infect Immun. 2006;74(9):5284���5291.
  104. Hart TC, Atkinson JC. Mendelian forms of periodontitis. Periodontol 2000. 2007;45:95���112.
  105. Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev. 2023;314(1):93���110.
  106. Curtis BR. Non���chemotherapy drug���induced neutropenia: key points to manage the challenges. Hematology Am Soc Hematol Educ Program. 2017;2017(1):187���193.
  107. Silva LM, Brenchley L, Moutsopoulos NM. Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol Rev. 2019;287(1):226���235.
  108. Toomes C, James J, Wood AJ, et al. Loss���of���function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet. 1999;23(4):421���424.
  109. Ryu OH, Choi SJ, Firatli E, et al. Proteolysis of macrophage inflammatory protein���1alpha isoforms LD78beta and LD78alpha by neutrophil���derived serine proteases. J Biol Chem. 2005;280(17):17415.
  110. Leavell KJ, Peterson MW, Gross TJ. Human neutrophil elastase abolishes interleukin���8 chemotactic activity. J Leukoc Biol. 1997;61(3):361���366.
  111. Silva LM, Kim TS, Moutsopoulos NM. Neutrophils are gatekeepers of mucosal immunity. Immunol Rev. 2023;314(1):125���141.
  112. Deas DE, Mackey SA, McDonnell HT. Systemic disease and periodontitis: manifestations of neutrophil dysfunction. Periodontol 2000. 2003;32:82���104.
  113. Moutsopoulos NM, Chalmers NI, Barb JJ, et al. Subgingival microbial communities in leukocyte adhesion deficiency and their relationship with local immunopathology. PLoS Pathog. 2015;11(3):e1004698.
  114. Kajikawa T, Wang B, Li X, et al. Frontline science: activation of metabolic nuclear receptors restores periodontal tissue homeostasis in mice with leukocyte adhesion deficiency���1. J Leukoc Biol. 2020;108(5):1501���1514.
  115. Schuster V, Mingers AM, Seidenspinner S, Nussgens Z, Pukrop T, Kreth HW. Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood. 1997;90(3):958���966.
  116. Tefs K, Georgieva M, Seregard S, et al. Characterization of plasminogen variants in healthy subjects and plasminogen mutants in patients with inherited plasminogen deficiency by isoelectric focusing gel electrophoresis. Thromb Haemost. 2004;92(2):352���357.
  117. Silva LM, Divaris K, Bugge TH, Moutsopoulos NM. Plasmin���mediated fibrinolysis in periodontitis pathogenesis. J Dent Res. 2023;102(9):972���978.
  118. Kapferer���Seebacher I, Pepin M, Werner R, et al. Periodontal Ehlers���Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet. 2016;99(5):1005���1014.
  119. Lepperdinger U, Angwin C, Milnes D, et al. Oral characteristics in adult individuals with periodontal Ehlers���Danlos syndrome. J Clin Periodontol. 2022;49(12):1244���1252.
  120. Wang H, Divaris K, Pan B, et al. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell. 2024;187(14):3690���3711.
  121. Markowitz RHG, LaBella AL, Shi M, et al. Microbiome���associated human genetic variants impact phenome���wide disease risk. Proc Natl Acad Sci U S A. 2022;119(26):e2200.
  122. Qin Y, Havulinna AS, Liu Y, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54(2):134���142.
  123. Lopera���Maya EA, Kurilshikov A, van der Graaf A, et al. Effect of host genetics on the gut microbiome in 7738 participants of the Dutch microbiome project. Nat Genet. 2022;54(2):143���151.
  124. Divaris K, Monda KL, North KE, et al. Genome���wide association study of periodontal pathogen colonization. J Dent Res. 2012;91(7 Suppl):21S���28S.
  125. Karlsson Linner R, Biroli P, Kong E, et al. Genome���wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet. 2019;51(2):245���257.
  126. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 2019;28(R2):R133���R142.
  127. de Rojas I, Moreno���Grau S, Tesi N, et al. Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nat Commun. 2021;12(1):3417.

Grants

  1. /NIH

Word Cloud

Created with Highcharts 10.0.0periodontitisperiodontalgenesfactorssusceptibilityriskmaintenancegeneticstudiesformsrepairtissuesGeneticreviewsyndromicincludePLGCTSCgeneidentifiedfunctionsvariantsplayrolehealingcausalPeriodontitiscomplexinflammatorydiseasehostgenomeconjunctionextrinsicdeterminesprogressionpredispositionstrongestfactorfirstdecadeslifepeopleagechronicexposuremicrobiomeputsstrainproperbarrierfunctionsummarizescurrentknowledgeimplicatedderivedhypothesis-freesystematicwholegenome-profilinggenome-wideassociation[GWAS]quantitativetraitloci[QTL]mappingindependentlyvalidatedunbiasedapproachesiimonogenicoligogeniciiilimitedSIGLEC5ROBO2ABCA1PF4Notablymutationsalsonon-syndromicprepubertalearly-onsetsuggestpathwaysaffectedperiodontitis-associatedconvergeinvolvedstructuralintegrityParticularlyinflamedulceratedincludingrolesfibrinolysisextrusioncellulardebrisextracellularmatrixremodelingangiogenesisSyndromesphenotypeindicateneutrophilsimportantregulationinflammationperiodontiumestablishedthereforecollectivelyprovidenewinsightsmolecularmechanismsplausibleunderlyingimplicateimpairedperiodontitis-Asynthesisrecentfindingsoralmucosatissuewound

Similar Articles

Cited By