Characterization of DNA methylation profile of the entire CpG island spanning the 5' untranslated region to intron 1 of the Oct4/POU5F1 gene in bovine gametes, embryos, and somatic cells.
Stem cells are undifferentiated cells that exhibit a bivalent chromatin state that determines their fate. These cells have potential applications in human and animal health and livestock production. Somatic cell nuclear transfer or cloning is currently being used to produce genetically edited animals. A highly differentiated genome is the main obstacle to correcting epigenetic reprogramming by enucleated oocytes during cloning. Activation of pluripotency genes in the somatic genome is a promising strategy to contribute to more efficient epigenetic reprogramming, improving this technique. Recently, epigenome editing has emerged as a new generation of clustered regularly interspaced short palindromic repeats-clustered regularly interspaced short palindromic repeats-associated protein 9 technology with the aim of modifying the cellular epigenome to turn genes on or off without modifying DNA. Here, we characterize the DNA methylation profile of the CpG island spanning the 5' untranslated region to intron 1 of the bovine octamer-binding transcription factor (Oct4) gene in gametes, embryos, and fibroblasts. DNA methylation patterns were categorized into three levels: low (0%-20%), moderate (21%-50%), and high (51%-100%). Sperm and embryos showed a hypomethylation pattern, whereas oocytes exhibited a hypo- to moderate methylation pattern. Fetal and adult skin fibroblasts were hypomethylated and moderately methylated, respectively. These results are essential for future studies aimed at manipulating the expression of Oct4. Thus, epigenome editing can be used to turn on the Oct4 in somatic cells to generate induced pluripotent stem cells. This strategy could potentially convert a fully differentiated cell into a cell with certain degree of pluripotency, facilitating nuclear reprogramming by the enucleated oocyte and improving cloning success rates.
Abofoul���Azab, M., Lunenfeld, E., Kleiman, S., Barda, S., Hauser, R. & Huleihel, M. (2022) Determining the expression levels of CSF���1 and OCT4, CREM���1, and protamine in testicular biopsies of adult Klinefelter patients: their possible correlation with spermatogenesis. Andrologia, 54, 1���10.
Al���Khtib, M., Blach��re, T., Gu��rin, J.F. & Lef��vre, A. (2012) Methylation profile of the promoters of Nanog and Oct4 in ICSI human embryos. Human Reproduction, 27, 2948���2954.
Basu, A., Dasari, V., Mishra, R.K. & Khosla, S. (2014) The CpG Island encompassing the promoter and first exon of human DNMT3LGene is a PcG/TrXresponse element (PRE). PLoS One, 9, 1���15.
Brenet, F., Moh, M., Funk, P., Feierstein, E., Viale, A.J., Socci, N.D. et al. (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One, 6, e14524.
Cequier, A., Sanz, C., Rodellar, C. & Barrachina, L. (2021) The usefulness of mesenchymal stem cells beyond the musculoskeletal system in horses. Animals, 11(4), 931.
Chen, H., Jin, K., Song, J., Zuo, Q., Yang, H., Zhang, Y. et al. (2019) Functional characterization of the Sox2, c���Myc, and Oct4 promoters. Journal of Cellular Biochemistry, 120, 332���342.
Cowl, V.B., Comizzoli, P., Appeltant, R., Bolton, R.L., Browne, R.K., Holt, W.V. et al. (2024) Cloning for the twenty���first century and its place in endangered species conservation. Annual Review of Animal Biosciences, 12, 91���112.
Cunha, A.T.M., Carvalho, J.O., Kussano, N.R., Martins, C.F., Mour��o, G.B. & Dode, M.A.N. (2016) Bovine epididymal spermatozoa: resistance to cryopreservation and binding ability to oviductal cells. Cryobiology, 73, 348���355.
Dode, M.A.N., Caixeta, F.M.C., Vargas, L.N., Leme, L.O., Kawamoto, T.S., Fidelis, A.A.G. et al. (2023) Genome transfer technique for bovine embryo production using the metaphase plate and polar body. Journal of Assisted Reproduction and Genetics, 40, 943���951.
Dode, M.A.N., Capobianco, N., Vargas, L.N., Mion, B., Kussano, N.R., Spricigo, J.F. et al. (2024) Seminal cell���free DNA as a potential marker for in vitro fertility of Nellore bulls. Journal of Assisted Reproduction and Genetics, 41(5), 1357���1370. Available from: https://doi.org/10.1007/s10815���024���03068���y
Dominguez, A.A., Chavez, M.G., Urke, A., Gao, Y., Wang, L. & Qi, L.S. (2022) CRISPR���mediated synergistic epigenetic and transcriptional control. The CRISPR Journal, 5, 264���275.
Fayomi, A.P. & Orwig, K.E. (2018) Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Research, 29, 207���214.
Gerrard, L., Zhao, D., Clark, A.J. & Cui, W. (2005) Stably transfected human embryonic stem cell clones express OCT4���specific green fluorescent protein and maintain self���renewal and pluripotency. Stem Cells, 23, 124���133.
Gorczyca, G., Wartalski, K., Wiater, J., Samiec, M., Tabarowski, Z. & Duda, M. (2021) Anabolic steroids���driven regulation of porcine ovarian putative stem cells favors the onset of their neoplastic transformation. International Journal of Molecular Sciences, 22(21), 11800.
Hackett, J.A. & Surani, M.A. (2014) Review regulatory principles of pluripotency: from the ground state up. Cell Stem Cell, 15(4), 416���430.
Hammoud, S.S., Nix, D.A., Zhang, H., Purwar, J., Carrell, D.T. & Cairns, B.R. (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature, 460, 473���478.
Hawkins, K. (2014) Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World Journal of Stem Cells, 6, 620.
Huang, D., Wang, L., Talbot, N.C., Huang, C., Pu, L., Zhao, X. et al. (2019) Analyzing bovine OCT4 and NANOG enhancer activity in pluripotent stem cells using fluorescent protein reporters. PLoS One, 13, 1���15.
Huleihel, M., Nourashrafeddin, S. & Plant, T.M. (2015) Application of three���dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian Journal of Andrology, 17, 972���980.
Jones, K.L. & Tarochione���Utt, K.D. (2004) DNA methylation in bovine adult and fetal fibroblast cells. Cloning and Stem Cells, 6, 259���266.
Kaneda, M., Watanabe, S., Akagi, S., Inaba, Y., Geshi, M. & Nagai, T. (2017) Proper reprogramming of imprinted and non���imprinted genes in cloned cattle gametogenesis. Animal Science Journal, 88, 1678���1685.
Keefer, C.L. (2015) Artificial cloning of domestic animals. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 8874���8878.
Kim, D.E., Lee, J.H., Ji, K.B., Park, K.S., Kil, T.Y., Koo, O. et al. (2022) Generation of genome���edited dogs by somatic cell nuclear transfer. BMC Biotechnology, 22, 1���7.
Kim, J.Y., Nam, Y., Alice, Y., Ji, R. & Ju, H. (2022) Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Reviews and Reports, 18, 142���154.
K��hholzer, B., Hawley, R.J., Lai, L., Kolber���Simonds, D. & Prather, R.S. (2001) Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs. Biology of Reproduction, 64, 1695���1698.
Kumaki, Y., Oda, M. & Okano, M. (2008) QUMA: quantification tool for methylation analysis. Nucleic Acids Research, 36, 170���175.
Leme, L.O., Carvalho, J.O., Franco, M.M. & Dode, M.A.N. (2020) Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219���227.
Liu, X.S., Wu, H., Ji, X., Dadon, D., Young, R.A., Liu, X.S. et al. (2016) Editing DNA methylation in the mammalian genome resource editing DNA methylation in the mammalian genome. Cell, 167, 233���235.e17.
Min, B., Cho, S., Park, J.S., Lee, Y.G., Kim, N. & Kang, Y.K. (2015) Transcriptomic features of bovine blastocysts derived by somatic cell nuclear transfer. G3 (Bethesda), 5(12), 2527���2538.
Mulas, C., Chia, G., Jones, K.A., Hodgson, A.C., Stirparo, G.G. & Nichols, J. (2018) Oct4 regulates the embryonic axis and coordinates exit from pluripotency and germ layer specification in the mouse embryo. Development, 145, dev159103.
Nichols, J. & Smith, A. (2009) Naive and primed pluripotent states. Cell Stem Cell, 4, 487���492.
Okita, K., Ichisaka, T. & Yamanaka, S. (2007) Generation of germline���competent induced pluripotent stem cells. Nature, 448, 313���317.
Pamnani, M., Sinha, P., Singh, A., Nara, S. & Sachan, M. (2016) Methylation of the Sox9 and Oct4 promoters and its correlation with gene expression during testicular development in the laboratory mouse. Genetics and Molecular Biology, 39, 452���458.
Pan, C., Sretenovic, S. & Qi, Y. (2021) CRISPR/dCas���mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology, 60, 101980.
Perisse, I.V., Fan, Z., Singina, G.N., White, K.L. & Polejaeva, I.A. (2021) Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11, 1���21.
Punetha, M., Bajwa, K.K., Dua, S., Bansal, S., Kuotsu, V., Parashar, A. et al. (2021) Pluripotent stem cells for livestock health and production. Current Stem Cell Research & Therapy, 17, 252���266.
Ross, P.J., Rodriguez, R.M., Iager, A.E., Beyhan, Z., Wang, K., Ragina, N.P. et al. (2009) Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction, 137(3), 427���437.
S��, A.L., Sampaio, R.V., da Costa Almeida, N.N., Sangalli, J.R., Brito, K.N.L., Bressan, F.F. et al. (2017) Effect of POU5F1 expression level in clonal subpopulations of bovine fibroblasts used as nuclear donors for somatic cell nuclear transfer. Cellular Reprogramming, 19(5), 294���301.
Sadeghian���Nodoushan, F., Aflatoonian, R., Borzouie, Z., Akyash, F., Fesahat, F., Soleimani, M. et al. (2016) Pluripotency and differentiation of cells from human testicular sperm extraction: an investigation of cell stemness. Molecular Reproduction and Development, 83, 312���323.
Samadian, A., Hesaraki, M., Mollamohammadi, S., Asgari, B., Totonchi, M. & Baharvand, H. (2018) Temporal gene expression and DNA methylation during embryonic stem cell derivation. Cell Journal, 20, 361���368.
Samiec, M. (2022) Molecular mechanism and application of somatic cell cloning in mammals ��� past, present and future. International Journal of Molecular Sciences, 23(22), 13786.
Samiec, M. & Skrzyszowska, M. (2010) The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear���transferred embryos. Annals of Animal Science, 10(4), 399���411.
Samiec, M. & Skrzyszowska, M. (2012) High developmental capability of porcine cloned embryos following trichostatin A���dependent epigenomic transformation during in vitro maturation of oocytes pre���exposed to R���roscovitine. Animal Science Papers and Reports, 30(4), 383���393.
Samiec, M., Wiater, J., Wartalski, K., Skrzyszowska, M., Trzci��ska, M., Lipi��ski, D. et al. (2022) The relative abundances of human leukocyte antigen���E, �����galactosidase a and �����gal antigenic determinants are biased by trichostatin A���dependent epigenetic transformation of triple���transgenic pig���derived dermal fibroblast cells. International Journal of Molecular Sciences, 23(18), 10296.
Sangalli, J.R., Chiaratti, M.R., De Bem, T.H., de Ara��jo, R.R., Bressan, F.F., Sampaio, R.V. et al. (2014) Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One, 9(6), e101022.
Sangalli, J.R., Sampaio, R.V., De Bem, T.H.C., Smith, L.C. & Meirelles, F.V. (2023) Cattle cloning by somatic cell nuclear transfer. Methods in Molecular Biology, 2647, 225���244.
Schumann, N.A.B., Mendon��a, A.S., Silveira, M.M., Vargas, L.N., Leme, L.O., De Sousa, R.V. et al. (2020) Procaine and S���Adenosyl���l���homocysteine affect the expression of genes related to the epigenetic machinery and change the DNA methylation status of in vitro cultured bovine skin fibroblasts. DNA and Cell Biology, 39, 37���49.
Simmet, K., Zakhartchenko, V., Philippou���Massier, J., Blum, H., Klymiuk, N. & Wolf, E. (2018) OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 115, 2770���2775.
Takada, Y., Iyyappan, R., Susor, A. & Kotani, T. (2020) Posttranscriptional regulation of maternal Pou5f1/Oct4 during mouse oogenesis and early embryogenesis. Histochemistry and Cell Biology, 154, 609���620.
Takahashi, K. & Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663���676.
Tsujimoto, H. & Osafune, K. (2022) Current status and future directions of clinical applications using iPS cells���focus on Japan. The FEBS Journal, 289, 7274���7291.
Ueda, J. & Yamazaki, T. (2023) Toward the development of epigenome editing���based therapeutics: potentials and challenges. International Journal of Molecular Sciences, 24(5), 4778.
Varzideh, F., Gambardella, J., Kansakar, U., Jankauskas, S.S. & Santulli, G. (2023) Molecular mechanisms underlying pluripotency and self���renewal of embryonic stem cells. International Journal of Molecular Sciences, 24(9), 8386.
Wang, N., Xu, S. & Egli, D. (2023) Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends in Cell Biology, 33, 872���886.
Wu, G. & Sch��ler, H.R. (2014) Role of Oct4 in the early embryo development. Cell Regeneration, 3(3), 7.
Xie, S., Wang, Z., Okano, M., Nogami, M., Li, Y., He, W.W. et al. (1999) Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene, 236, 87���95.
Yamazaki, Y., Fujita, T.C., Low, E.W., Alarc��n, V.B., Yanagimachi, R. & Marikawa, Y. (2006) Gradual DNA demethylation of the Oct4 promoter in cloned house embryos. Molecular Reproduction and Development, 73, 180���188.
Yang, J., Petty, C.A., Dixon���McDougall, T., Lopez, M.V., Tyshkovskiy, A., Maybury���lewis, S. et al. (2023) Chemically induced reprogramming to reverse cellular aging. Aging (Albany NY), 15, 5966���5989.
Zhang, C., Xu, M., Yang, M., Liao, A., Lv, P., Liu, X. et al. (2024) Efficient generation of cloned cats with altered coat colour by editing of the KIT gene. Theriogenology, 222, 54���65.
Zhang, H., Siu, M., Wong, E., Wong, K., Li, A., Chan, K. et al. (2008) Oct4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease. Placenta, 29, 549���554.
Zhang, Q., Han, Z., Zhu, Y., Chen, J. & Li, W. (2020) The role and specific mechanism of OCT4 in cancer stem cells: a review. International Journal of Stem Cells, 13, 312���325.
Zhang, X., Gao, S. & Liu, X. (2021) Review article advance in the role of epigenetic reprogramming in somatic cell nuclear transfer���mediated embryonic development. Stem Cells International, 2021, 6681337.
Zhou, X.Y., Liu, L.L., Jia, W.C. & Pan, C.Y. (2016) Methylation profile of bovine Oct4 gene coding region in relation to three germ layers. Journal of Integrative Agriculture, 15, 618���628.
Zhu, L., Marjani, S.L. & Jiang, Z. (2021) The epigenetics of gametes and early embryos and potential long���range consequences in livestock species���filling in the picture with epigenomic analyses. Frontiers in Genetics, 12, 1���21.
Grants
/Conselho Nacional de Desenvolvimento Cient��fico e Tecnol��gico
/Funda����o de Apoio �� Pesquisa do Distrito Federal - FAP DF