Hypothermia as an adjunctive therapy to percutaneous intervention after ST-elevation myocardial infarction-Effects on regional myocardial contractility.

Lucas de Mello Queiroz, Rafael Almeida Fonseca, Luis Augusto Palma Dallan, Thatiane Facholi Polastri, Ludhmila Abrahao Hajjar, Jose Carlos Nicolau, Roberto Kalil Filho, Karl B Kern, Sergio Timerman, Carlos E Rochitte
Author Information
  1. Lucas de Mello Queiroz: University of Sao Paulo Medical School, Sao Paulo, SP, Brazil; Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  2. Rafael Almeida Fonseca: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  3. Luis Augusto Palma Dallan: Department of Cardiovascular Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
  4. Thatiane Facholi Polastri: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  5. Ludhmila Abrahao Hajjar: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  6. Jose Carlos Nicolau: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  7. Roberto Kalil Filho: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  8. Karl B Kern: Division of Cardiovascular Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona, USA.
  9. Sergio Timerman: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil.
  10. Carlos E Rochitte: Heart Institute, InCor, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, SP, Brazil. Electronic address: rochitte@incor.usp.br.

Abstract

BACKGROUND: The effects of endovascular therapeutic hypothermia (ETH) in ST-elevation myocardial infarction (STEMI) regional contractility are unknown, and its impact on segmental contractility has still not been evaluated. We sought to evaluate segmental myocardial strain after ETH adjuvant to percutaneous coronary intervention (PCI) in STEMI.
METHODS: We included patients who underwent 1.5T cardiovascular magnetic resonance exams 5 and 30 days after acute anterior or inferior STEMI in a previous randomized trial. Left ventricle (LV) strain was evaluated on infarcted, adjacent, and remote myocardium. Segmental circumferential (CS) and radial strains (RS) were measured using feature-tracking imaging. Repeated measures of analysis of variance were used for comparisons within time and treatment.
RESULTS: Forty patients were divided into hypothermia (ETH, n = 29) and control (n = 11) groups, with 5210 LV segments. In ETH infarcted areas, RS (11.2 ± 16 vs 14.8 ± 15.2, p = 0.001) and CS (-5.4 ± 11.1 vs -8 ± 11.1, p = 0.001) showed recovery from 5-30 days compared to controls (11.4 ± 14 vs 13.1 ± 1 6.8, p = 0.09; -6.5 ± 10.6 vs -6.4 ± 12.5, p = 0.94). In control remote areas, RS (28 ± 18 vs 31.7 ± 18.5, p = 0.001) and CS (-15.5 ± 10.7 vs -17.1 ± 9, p = 0.001) improved from 5-30 days compared to ETH (28.6 ± 18.6 vs 29 ± 20, p = 0.44; -15.2 ± 10.4 vs -15.3 ± 10.6, p = 0.82). Transmural infarcted areas in ETH improved RS (11.8 ± 13.2 vs 8.17 ± 14.7, p = 0.001) and CS (-6.1 ± 10.9 vs.-3.1 ± 11.3, p = 0.001) compared to controls, with better contractility at 30 days.
CONCLUSION: In anterior or inferior STEMI patients, ETH adjuvant to PCI is associated with significant improvement in RS and CS of infarcted areas, including transmural segments, but not in remote area. This might further increase our pathophysiological knowledge on early LV remodeling and ultimately suggest potential clinical value.
AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Keywords

References

  1. Eur J Radiol. 2015 May;84(5):840-8 [PMID: 25743248]
  2. J Thromb Thrombolysis. 1997 Jan;4(1):109-110 [PMID: 10639242]
  3. Int J Cardiol Heart Vasc. 2020 Jun 11;29:100560 [PMID: 32566723]
  4. N Engl J Med. 2000 Nov 16;343(20):1445-53 [PMID: 11078769]
  5. JACC Cardiovasc Imaging. 2018 Oct;11(10):1433-1444 [PMID: 29454776]
  6. Circulation. 1993 Sep;88(3):1279-88 [PMID: 8353890]
  7. Ther Hypothermia Temp Manag. 2021 Sep;11(3):135-144 [PMID: 32552523]
  8. Int J Cardiol. 2015 Mar 15;183:162-70 [PMID: 25675901]
  9. J Magn Reson Imaging. 2018 May;47(5):1415-1425 [PMID: 29205626]
  10. Arch Cardiovasc Dis. 2016 Dec;109(12):716-722 [PMID: 27692660]
  11. Heart Fail Rev. 2017 Jul;22(4):465-476 [PMID: 28620745]
  12. Crit Care Med. 1988 Oct;16(10):942-6 [PMID: 3048895]
  13. Circulation. 2000 Jun 27;101(25):2981-8 [PMID: 10869273]
  14. JACC Basic Transl Sci. 2020 Mar 23;5(3):279-281 [PMID: 32215379]
  15. Heart. 2019 Apr;105(7):531-537 [PMID: 30361270]
  16. J Am Coll Cardiol. 2014 May 13;63(18):1857-65 [PMID: 24509284]
  17. J Am Coll Cardiol. 2010 Jun 1;55(22):2470-9 [PMID: 20510214]
  18. JACC Cardiovasc Imaging. 2018 Oct;11(10):1448-1457 [PMID: 29248649]
  19. J Am Coll Cardiol. 2002 Dec 4;40(11):1928-34 [PMID: 12475451]
  20. EuroIntervention. 2017 Aug 4;13(5):e531-e539 [PMID: 28506940]
  21. Circulation. 1996 Aug 15;94(4):660-6 [PMID: 8772685]
  22. J Clin Med. 2024 Sep 12;13(18): [PMID: 39336877]
  23. Am J Cardiol. 2001 Feb 1;87(3):283-8 [PMID: 11165961]
  24. J Am Coll Cardiol. 2005 Apr 5;45(7):1117-34 [PMID: 15808773]
  25. Int J Cardiovasc Imaging. 2020 Apr;36(4):703-712 [PMID: 31950298]
  26. J Magn Reson Imaging. 2017 Apr;45(4):1034-1045 [PMID: 27531830]
  27. Int J Cardiovasc Imaging. 2019 Nov;35(11):2095-2102 [PMID: 31267265]
  28. Radiology. 2020 Aug;296(2):299-309 [PMID: 32544032]
  29. Circ Cardiovasc Interv. 2015 Mar;8(3):e001965 [PMID: 25699687]
  30. J Clin Med. 2022 Feb 18;11(4): [PMID: 35207350]
  31. Radiology. 2019 Feb;290(2):329-337 [PMID: 30457480]
  32. J Am Coll Cardiol. 2019 Jul 16;74(2):238-256 [PMID: 31296297]
  33. N Engl J Med. 2007 Sep 13;357(11):1121-35 [PMID: 17855673]
  34. Mol Neurobiol. 1997 Jun;14(3):171-201 [PMID: 9294862]
  35. Ther Hypothermia Temp Manag. 2015 Jun;5(2):77-84 [PMID: 25985169]
  36. Cardiovasc Revasc Med. 2023 Feb;47:8-15 [PMID: 36115819]

Word Cloud

Created with Highcharts 10.0.0±=0p1ETH11001myocardial5CSRS610STEMIcontractilityinfarctedareas24hypothermiaST-elevationstraininterventionpatientsLVremote8compared187infarctionregionalsegmentalevaluatedadjuvantpercutaneouscoronaryPCImagneticresonance30 daysanteriorinferiorusedncontrolsegments5-30 dayscontrols14-628-159improved3BACKGROUND:effectsendovasculartherapeuticunknownimpactstillsoughtevaluateMETHODS:includedunderwent5TcardiovascularexamsacutepreviousrandomizedtrialLeftventricleadjacentmyocardiumSegmentalcircumferentialradialstrainsmeasuredusingfeature-trackingimagingRepeatedmeasuresanalysisvariancecomparisonswithintimetreatmentRESULTS:Fortydivided29groups521016vs 1415-5vs -8 pshowedrecoveryvs 1309vs -61294vs 31vs -17vs 292044vs -1582Transmural13vs 817vs-3betterCONCLUSION:associatedsignificantimprovementincludingtransmuralareamightincreasepathophysiologicalknowledgeearlyremodelingultimatelysuggestpotentialclinicalvalueAVAILABILITYOFDATAANDMATERIALS:datasetsand/oranalyzedcurrentstudyavailablecorrespondingauthoruponreasonablerequestHypothermiaadjunctivetherapyinfarction-EffectsCardiacMyocardialPercutaneousTherapeutic

Similar Articles

Cited By

No available data.